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H I G H L I G H T S

• The model integrates observational and simulation data, outperforming traditional CNNs in air quality estimation.
• Dynamic attention weights boost efficiency by focusing on critical features.
• Model reveals fluid dynamics laws, enhancing understanding of pollution patterns.
• Model exhibits strong transferability and generalization across diverse cities.
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A B S T R A C T

Machine learning, especially deep learning, can outperform traditional atmospheric models in air quality 
assessment, offering enhanced efficiency and accuracy without relying on detailed emission inventories and 
atmospheric chemical mechanisms. Despite their predictive power, deep learning models often grapple with the 
perception of being “black boxes” due to their intricate architectures. Here, we develop an attention-based 
convolutional neural network (CNN-attention) model that incorporates observational data, the parallelized 
large-eddy-simulation model (PALM), and urban morphology data for high-resolution spatial estimation of urban 
air quality. Our findings indicate that the CNN-attention model outperforms traditional CNN with higher ac
curacy and efficiency, achieving R2 = 0.987 and root mean square error (RMSE) = 0.15 mg/m3, while signifi
cantly reducing training time and memory usage. Compared to traditional machine learning models, the CNN 
exhibits higher R2 values and lower RMSE, showcasing its adeptness at capturing complex nonlinear patterns. 
The inclusion of attention layer further improves the model’s performance by dynamically assigning attention 
scores to key features, enabling the model to focus on areas of critical emissions and distinctive urban features 
such as highways, arterial roads, intersections, and dense building clusters. This approach also reveals fluid 
dynamical principles, highlighting the significant disparities in pollutant concentration across roadways caused 
by atmospheric turbulence, and the distinct plume formations influenced by land use and topography. When 
applied to various urban settings, the CNN-attention model exhibits superior generalizability and transferability. 
This study provides valuable scientific insights and technical support for urban planning, air quality manage
ment, and exposure risk evaluation.

1. Introduction

Currently, approximately 94 percent of world’s population live in 
areas where air quality does not meet the updated global air quality 
guidelines set by the World Health Organization, presenting serious 
public health risks (WHO, 2016; Shiraiwa et al., 2017; Rentschler and 
Leonova, 2023). Monitoring and estimating urban air quality pose 

considerable challenges due to the high temporal and spatial heteroge
neity, which stems from complex emission sources, the building envi
ronment, and non-linear atmospheric chemistry (Xu et al., 2021; 
Tripathi et al., 2023). The urban landscape, including variations in 
buildings and vegetation, also influences pollutant dispersion via at
mospheric turbulent (Fu et al., 2017; Jeanjean et al., 2015). Under
standing the localized dynamics of air pollution is crucial for identifying 
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high-emission zones and pollution hotspots (Deshmukh et al., 2020; 
Gately et al., 2017). Traffic-related emissions are often a primary source 
of numerous urban air pollutants, and prolonged exposure to these 
contaminants poses serious health risks (Chen et al., 2024). Carbon 
monoxide (CO) serves as a crucial indicator for urban air quality 
assessment and is influenced by local emission and meteorological 
conditions, making its accurate spatial estimation complex. The advent 
of mobile low-cost sensors has been transformative, providing fine-scale 
temporal and spatial data that complement traditional fixed-site moni
toring methods (Apte et al., 2017; Van den Bossche et al., 2015). 
Numerous studies have deployed mobile sensor platforms to capture the 
complex spatial and temporal variations of urban air pollutants 
(Kaivonen and Ngai, 2020; Peters et al., 2014). Nevertheless, mobile 
monitoring still struggles to achieve comprehensive micro-scale 
coverage, particularly in remote streets and off-road pollution areas. 
To address this, we propose a novel method that integrates mobile 
monitoring, large eddy simulation, and machine learning to estimate 
urban air quality more effectively.

Large eddy simulation (LES) models represent a significant 
advancement in modeling atmospheric turbulence and air quality, 
particularly for urban environments. These models excel in capturing 
complex dynamics of turbulent eddies and providing high-resolution 
simulations (Letzel et al., 2008; Resler et al., 2021). LES outperforms 
traditional models such as Gaussian, CMAQ, and ADMS-Urban by 
explicitly resolving larger-scale turbulent motions and parameterizing 
smaller scales, thus offering a more comprehensive depiction of atmo
spheric dynamics (Sun et al., 2016; Wang and Ngan, 2021). The Paral
lelized Large-Eddy Simulation Model (PALM) has emerged as a powerful 
tool for urban air quality research, proficient in handling complex urban 
geometries, achieving high parallelization efficiency, and accommoda
ting diverse physical processes (Maronga et al., 2015). Recent studies 
have demonstrated PALM’s capacity to simulate fine-scale pollution 
patterns, considering the influence of urban topography and meteoro
logical conditions (Wolf et al., 2021). For instance, Zhang et al. (2021)
utilized the PALM to simulate traffic-related CO diffusion in an urban 
environment with an ultra-high resolution of 10 m, revealing complex 
pollution patterns and the influence of different factors on dispersion. 
Despite their strengths, LES models encounter limitations, such as high 
computational demands, the need for real-time weather data, and dif
ficulties in representing multiple emission sources (Maronga et al., 
2015).

Machine learning (ML) has been widely applied to urban air quality 
evaluation at various scales (Lim et al., 2019; Liu et al., 2020; Zhong 
et al., 2021). Deep learning techniques, particularly long short-term 
memory (LSTM) and convolutional neural networks (CNNs), have 
significantly advanced in estimating air pollution levels and their com
plex nonlinearities, outperforming traditional ML methods (Aggarwal 
and Toshniwal, 2021; Xu et al., 2022). CNNs, designed for hierarchical 
image representation, utilize layered artificial neural networks to 
effectively extract features and reduce estimation uncertainty via suc
cessive nonlinear transformations (Kow et al., 2020; LeCun et al., 2015). 
Guo et al. (2023) proposed a Convolutional LSTM (ConvLSTM) network, 
a deep spatio-temporal learning model that utilizes dense monitoring 
data to capture spatio-temporal patterns in spatial-map sequences for 
citywide air quality assessment. While numerous studies have focused 
on enhancing the accuracy of ML models for air quality estimation, they 
continue to struggle with several challenges, including the demand for 
high computational resources, model complexity, and the opacity of the 
“black box” nature of these algorithms (Moursi et al., 2022).

The attention mechanism enhances the trade-off between accuracy 
and interpretability in deep learning models. mirroring human attention 
processes. As a pivotal element in machine learning and natural lan
guage processing (Bahdanau et al., 2016), it allows models to dynami
cally prioritize input data, thereby enhancing critical information 
processing and model interpretability (Gu et al., 2021; Hu et al., 2022). 
Recent studies have incorporated the attention mechanism into various 

machine learning models to enhance urban air quality estimation (Wang 
et al., 2023). For example, Li et al. (2020) developed an 
attention-augmented CNN-LSTM model that improves both the accuracy 
and interpretability of PM2.5 forecasts. Additionally, Hu et al. (2022)
proposed an attention-based convolutional LSTM (AB-ConvLSTM) to 
predict urban mass transit speeds, leveraging the attention mechanism 
to discern and emphasize relevant historical data segments. However, 
these models tend to overlook diverse influencing factors, predomi
nantly focusing on data-driven estimation while disregarding the 
physical dynamics of pollutant dispersion (Reichstein et al., 2019).

In this study, we develop an attention-based CNN model that in
tegrates mobile observations, and large eddy simulations outputs to 
address the limitations inherent in each method while enhancing the 
model’s accuracy, interpretability, and capacity to learn key features 
and physical laws. The main objective of this work is to propose an 
attention-based CNN model for the rapid and precise spatial estimation 
of high-resolution urban air quality. Initially, we explore the spatial- 
temporal autocorrelation of observational data and its impact on 
model performance. We then conduct a comparative analysis of the 
traditional CNN and the enhanced CNN-attention model, employing 
cross-validation to ensure a robust assessment of their performance. We 
also elucidate the principles of the attention mechanism, which en
hances the model’s interpretability. Finally, by applying the CNN- 
attention model to various urban environments, we assess the its 
generalizability and transferability, which are crucial for its application 
in diverse settings.

2. Materials and methods

2.1. Data collection and pre-processing

The dataset described here, published in Wang et al. (2021), com
prises air quality data collected from the streets of Nanjing over a 
one-year period (October 2019 to September 2020). This data was 
gathered using two taxis equipped with mobile sensors (model 
XHAQSN-508, Hebei Sailhero Environmental Protection High-tech Co., 
Ltd., Hebei, China). The mobile monitoring system is equipped with a 
gas sensing module that detects CO, nitrogen dioxide (NO2), and Ozone 
(O3). The CO sensor (model XH-CO-50-7) operates on electrochemical 
principles. The system also includes a GPS module that records location 
data every 10 s, and a data logger that captures and transmits sensor 
readings to a central server. A temperature/humidity (T/H) sensor 
module is included for calibration purposes. To ensure the measurement 
accuracy of the XHAQSN-508 system, it undergoes monthly calibrations 
at the Station for Observing Regional Processes of the Earth System 
(SORPES) in Nanjing, with each calibration lasting a minimum of seven 
days (Ding et al., 2013). During calibration, the sensor outputs were 
fine-tuned using a standard measurement device, yielding CO concen
tration readings with a coefficient of determination (R2) between 0.82 
and 0.97. Detailed documentation of the calibration process can be 
found in Wang et al. (2021). Fig. 1B illustrates the spatial distribution of 
the processed CO concentrations at a 50 m resolution, which were ob
tained from mobile observations and processed with ArcMap 10.7.

The dataset described here, published in Zhang et al. (2021), uses the 
PALM-4U model (version 3689) to simulate CO dispersion, a 
traffic-related pollutant, across Nanjing with a high spatial resolution of 
10 m. This model, developed by the team at Leibniz University of 
Hanover (Maronga et al., 2015), applies the Boussinesq approximation 
to the incompressible Navier-Stokes equations and is specifically 
designed for LES of turbulent flows. Optimized for high-performance 
computing, PALM efficiently conducts LES on parallel computing sys
tems. The study central area is located at 118.72◦ E, 32.07◦ N. To 
minimize the impact of urban structures on the simulations, we use a 
grid stretching technique with an expansion ratio of 1.1 across 48 ver
tical levels. This extends the model’s vertical domain to approximately 
1000 m. Such a configuration requires an initial convergence phase, 
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during which the simulations are conducted under static boundary 
conditions. The model’s grid resolution is set at 0.0001◦, resulting a grid 
matrix of 960 × 960 × 48 (Fig. 1C). The simulations run for 3 h with a 
time step of 6 s. The initial 2 h are dedicated to allowing the turbulent 
field to stabilize, with the results from the final hour being averaged to 
indicate the model’s attainment of a steady state.

In this study, the CNN-attention model incorporates four categories 
of input data: building heights, topography, CO emission rates, and 
observed CO concentrations (Figs. S1 and S3). The topographic data 
includes both the baseline elevation, with an original resolution of 30 m, 
and the building heights. The elevation data undergo linear interpola
tion to mathch the model’s grid resolution (Computer Network Infor
mation Center). Data on building heights, obtained from Gaode Maps 
(https://ditu.amap.com), are estimated based on an average of 3 m per 
story and adjusted to fit the model’s grid. CO emissions are estimated 
using the “standard road length” method, which distributes the total 
traffic emissions across individual roads according to road type and 
traffic volume (Zheng et al., 2009). The method for detailed calculation 
is elaborated in Zhang et al. (2021). We consider two emission scenarios, 
high and low, each estimated on a uniform wind field at the boundary 
layer’s top. Due to computational limits, only a selection of meteoro
logical conditions is simulated. We incorporate eight wind directions (N, 
NE, E, SE, S, SW, W, and NW), each 45◦ apart. Wind speeds of 10 m/s, 
6.5 m/s, and 3 m/s to represent strong, moderate, and weak wind 
conditions, respectively (Yan et al., 2021; Zhang et al., 2021). This re
sults in 48 distinct scenarios simulated using the PALM (Fig. S2). The 
CNN-attention model is trained on approximately 44,236,800 data 
points (48 scenarios × 960 × 960 grid points). For the testing phase, we 

use a separate set of scenarios not included in the training set to ensure 
an unbiased evaluation of the model’s performance.

To assess the impact of observational data on the CNN-attention 
model’s accuracy, we categorize mobile observation data into working 
and non-working days using the grid-based processing method (Wang 
et al., 2021). Employing ArcMap 10.7, we spatially integrate observa
tion data with the corresponding grid points. The data is then sorted 
based on temporal characteristics, with the annual mean observed 
values at each grid point adjusted to match the model’s resolution of 
0.0001◦. Fig. S3 illustrates the spatial distribution of observed CO con
centrations at 10 m resolution for both weekdays and weekends. It 
shows that median CO levels on roads are higher during weekdays (0.86 
± 1.08 mg/m3) than on weekends (0.82 ± 1.02 mg/m3). This difference 
is primarily due to the variations in traffic emissions (Li et al., 2018). 
Furthermore, CO concentrations are consistently higher on major roads 
than on secondary roads. To enhance model convergence, we normalize 
all input data, effectively reducing the potential impact of differing 
scales and dimensions.

2.2. Attention-based CNN model

Fig. 2 shows the architecture of the CNN-attention model. In the 
previous section, we standardize the four input feature variables to a 
uniform resolution and normalize them to minimize feature discrep
ancies. A Lambda function is then employed to refine, rotate, and crop 
the input data. These preprocessed input features are then passed 
through a convolutional layer, where the Adam optimizer and ReLU 
activation function facilitate model training. L2 regularization (Lambda 

Fig. 1. Location of the monitoring areas in the city of Nanjing urban area. B means the extent of the observation area and the results of the 50 m grid point dis
tribution of CO concentration. C represents the simulation area of the PALM model, with red stars marking the locations of background monitoring stations that serve 
as reference points for comparing and validating the model’s outputs. The observational data include influences from both local sources and external sources 
transported through the atmosphere. Map credit: ESRI 2024.
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= 1e-4) is applied to prevent overfitting. The model’s initial layer uses 
64 kernels of size 21 × 21 with ReLU activation. This is followed by a 
second layer with 64 kernels of size 41 × 41, and a third layer with the 
same number of kernels at a size of 61 × 61, both layers following the 
same processing protocol as the first. Subsequent to the convolutional 
layers, the model incorporates both a channel attention layer and a 
spatial attention layer to enhance feature representation. The attention 
layer in the model assigns weights to different channel and spatial fea
tures, allowing the model to focus on the most important aspects of the 
input data. After processing by the attention mechanisms, a concatenate 
function is used to merge all the feature maps. This ensures that all vital 
features are simultaneously considered in the subsequent layers. An 
additional convolutional layer with 64 kernels follows the attention 
layers to enhance feature extraction and interation. The final output of 
the model is produced by a Conv2D layer with a linear activation 
function. To thoroughly train the model on the features represented in 
the PALM model, we use the outputs from all 48 scenarios as our training 
dataset, enabling the model to estimate CO concentration distributions 
for each scenario accurately.

To address the high memory requirements of training the CNN- 
attention model, we use hardware acceleration through an NVIDIA 
4090 GPU with 24 GB of memory. This powerful GPU supports a training 
batch size of 20, enhancing computational efficiency. Training pro
gresses in steps, with step corresponding to one batch and an epoch 

encompassing all batches. We have programmed the training to span 
512 epochs, with each epoch taking approximately 20 min. The model’s 
execution and the processing of results are performed within a Python 
3.10 environment. Detailed training configurations and hyper
parameters are listed in Table S1.

2.3. Attention mechanism

In this study, we use a dual attention mechanism that integrates both 
channel and spatial attention layers to improve model performance. 
Fig. 3 illustrates the workflow of this attention mechanism. Initially, the 
process involves global average pooling, which condenses each channel 
of the feature map to its mean features. These mean features serve as 
inputs to a dense layer that reduces their dimensionality through the 
ReLU activation function. Subsequently, another dense layer expands 
these features to the original feature space’s dimensionality, with the 
sigmoid activation function assigning weights between 0 and 1. These 
weights are applied to scale the original feature map on an element-wise 
basis, thus adjusting the relevance of each channel. The formula for 
computing channel attention scores is presented as follows (Wang et al., 
2020): 

A= sigmoid(W2 ⋅ ReLU(W1 ⋅ Fc + b1)+ b2) (1) 

Where, W1 and b1 represent the weights and biases of the first fully 

Fig. 2. CNN-attention model constructure.

Fig. 3. Constructure of attention mechanism.
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connected layer, respectively. Similarly, W2 and b2 correspond to the 
weights and biases of the second fully connected layer. Fc denotes the 
average eigenvalue of each channel obtained by global average pooling, 
and c denotes the number of channels. ReLU is a non-linear activation 
function, while the sigmoid activation function maps the output to a 
range between 0 and 1.

Then, channel reweighting is calculated. 

Xʹ
c = Xc ⋅ Ac (2) 

Where, Ac represents the attention weight for channel c, and Xć is the 
reweighted channel feature map.

Attention scores enable researchers to gain an intuitive under
standing of a model’s decision-making process by highlighting which 
features are prioritized through increased attentional weights. This 
insight reveals the types of information that the model considers most 
critical. Within the scope of channel attention, the softmax function can 
normalize weights across channels, making their total equal to one, thus 
facilitating comparability. The calculation of attention proportions is 
determined by the following formula: 

Attention Propotioni =
eAttention Scorei

∑
jeAttention Scorej

(3) 

Where, Attention Scorei is the raw attention score for the ith channel, and 
Attention Scorej is the raw attention score for the jth feature channel. 
Attention Proportioni represents the normalized attention score pro
portion for the ith channel. The term 

∑
jeAttention Scorej sums the 

eAttention Scorei values across all channels, ensuring that the total sum of all 
Attention Propotioni equals 1. This normalization is crucial for compa
rability of attention weights across channels.

The spatial attention layer aims to assess the importance of each 
spatial location by examining the characteristics of the feature map 
(Wang et al., 2023). Initially, the channel-wise average and maximum 
values are computed from the feature map. These statistics are concat
enated along the channel axis, forming an augmented feature map. This 
map is then processed by a 2D convolutional layer (Conv2D), yielding a 
spatial weight map that assigns a relative importance to each spatial 
location. The original feature map, denoted as (F), is then scaled on an 
element-wise by the spatial attention weight map, denoted as (S), thus 
adjusting the prominence of each spatial position. 

Favg =
1
C
∑C

c=1
Fc (4) 

Fmax = maxC
c=1 Fc (5) 

Fnew =Concat
(
Favg, Fmax

)
(6) 

S=Conv2D(Fnew) (7) 

Snorm = sigmoid(S) (8) 

Fʹ= F ⊙ Snorm (9) 

Where, Favg denotes the average value of the channel dimension and Fmax 
denotes the maximum value; Fnew is the new feature map obtained by 
splicing Favg and Fmax over the channel dimension. Concat refers to the 
splicing operation. Snorm denotes the normalized spatial attention weight 
map. F′ denotes the final spatially reweighted feature map. ⊙ represents 
element-by-element multiplication. By calculating the spatial attention 
weights, the model can focus more on spatial regions that are crucial for 
estimation, thus improving the efficiency and accuracy of feature 
extraction.

2.4. Model evaluation

To comprehensively assess the CNN-attention model’s performance 
and the transferability, we use two cross-validation methods, including 
10-fold cross-validation and out-of-sample cross-validation (Wang et al., 
2024). We perform a 10-fold cross-validation by dividing the data into 
10 different folds. In 10-fold cross-validation, the data is partitioned into 
10 subsets, with each subset serving once as the validation set and the 
remaining 9 as the training set. For out-of-sample cross-validation, we 
test the model’s robustness using three unseen scenario datasets (SSE, 2 
m/s; WSW, 4.75 m/s; and NNE, 8 m/s) that are separate from the 
training data (Wang et al., 2024). The model’s accuracy is quantified 
using the coefficient of determination (R2) and root mean square error 
(RMSE). By combining these two cross-validation methods, we validate 
the model’s reliability on historical data, and its stability on unseen 
datasets. This approach allows for a more comprehensive evaluation of 
the model’s generalization ability.

3. Results and discussion

3.1. Spatio-temporal autocorrelation analysis

To investigate the spatial and temporal autocorrelations of pollutants 
and improve the estimation accuracy of our model, we analyze CO 
concentration from mobile observation data (Crocchianti et al., 2021). 
This autocorrelation analysis is crucial as it elucidates the model’s error 
structure, and reveals potential confounding factors, thereby accurately 
reflecting the inherent characteristics of the dataset. Fig. 4 shows the 
autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) for CO concentrations over a one-year period, obtained from 
these mobile sources. The raw data, recorded at 10 s intervals, shows 
minimal variation over short periods, especially when vehicular speed is 
low. Thus, we use a 5-min sliding average for this analysis. As depicted 
in Fig. 4a, CO concentration data at the minute level exhibit a significant 
positive autocorrelation within short periods, such as within 1 h, which 
diminishes with increasing lag time (Crocchianti et al., 2021). The 
absence of substantial periodic fluctuations in the ACF plots suggests 
that minute-to-minute variations in pollutant concentrations may lack 
significant periodicity, possibly due to the random nature of taxi routes. 
Fig. 4b indicates that the partial autocorrelation at lag 1 is notable, it 
decreases rapidly and approaches 0 as the lag increases. This pattern 
shows a strong short-term influence of prior pollutant concentrations. To 
reduce the impact of these temporal dynamic on the CNN model’s 
estimation accuracy, we calculate the annual average CO concentration 
for each 10 m grid points.

In this research, we utilize Moran’s index and hotspot analysis to 
investigate the spatial autocorrelation of CO concentration data, which 
is critical for enhancing model estimation accuracy. Fig. 5 illustrates that 
the Moran’s index for CO concentrations decreases with increasing 
distance, signifying a strong spatial autocorrelation at shorter ranges 
that weakens over longer distances. Specifically, the index value of 0.54 
at near 0 distance indicates significant autocorrelation for nearby ob
servations, which diminishes beyond 200 m, suggesting that CO con
centrations are spatially autocorrelated within a 200 m range. This is 
consistent with Crocchianti et al. (2021), who reported a similar spatial 
influence range for particulate matter larger than 1.1 μm decreased to 
60 m and to 155 m for NO. Leveraging these spatial autocorrelation 
findings, we refine our data processing to reflect the model’s resolution, 
computing the annual average CO concentrations at each 10 m grid 
point. This approach preserves spatial variability and enhances the 
model’s capacity to capture spatial features and identify local pollution 
sources and emission hotspots, thereby improving the its estimation 
accuracy.
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3.2. Model estimation performance

Fig. 5 shows a comparative analysis of the average CO concentration 
estimation from the CNN and CNN-attention models, with and without 
incorporating observational data, across 48 distinct scenarios. The re
sults show that the inclusion of the attention mechanism enhances the 
model’s accuracy in estimating mean CO concentrations, particularly in 
scenarios with high emissions and low wind speeds, resulting in a 
notable improvement in performance, with R2 = 0.972 (Fig. 5B). This 
enhanced performance is primarily due to the attention mechanism’s 
capacity to identify crucial features, particularly in areas with high 
emissions like motorways and arterial roads (Li et al., 2020). In addition, 
low wind speeds tend to hinder the dispersion of pollutants, which is 
especially problematic in densely built-up areas susceptible to pollutant 
accumulation (Fu et al., 2017). When observational data is integrated 
into the pre-trained CNN model, there is a slight increase in the R2 value 
of 0.005 and a decrease in the residual sum of squares (RSS), indicating 
an enhanced estimation performance. Adding observational data to the 
CNN-attention model further refines its performance, leading to an 
improved R2 = 0.987 (Fig. 5D). The augmented performance from 
incorporating observational data stems from two main factors: First, 
high-resolution observed data offers an accurate representation of air 
quality condition, enabling the model to adjust biases or inaccuracies 
inherent in theoretical or simulated inputs and align its estimates more 
closely with real-world observations. Second, urban air quality is 
influenced by a complex interplay of factors, including meteorological 
conditions, emission sources, topography, and building structures. 
Integrating observed CO concentration data enables the model to better 
identify critical features and their interactions, thus enhancing its 

overall estimation accuracy (Hu et al., 2022).

3.3. Model evaluation

To evaluate the significance of the estimation enhancements pro
vided by models integrating observational data and attention mecha
nisms, we conducted a paired sample t-test on the estimation from three 
new scenarios. The analysis yield p-values less than 0.01 for each 
comparison, confirming that the improvements are statistically signifi
cant and robust. Further, we employ 10-fold cross-validation for training 
and validation to assess the adaptability and generalization of the 
observed data-constrained CNN and CNN-attention models. The trained 
models are then applied to estimate three new wind scenarios charac
terized by distinctly different conditions (22.5◦, 2 m/s; 247.5◦, 4.75 m/s; 
and 157.5◦, 8 m/s). The results on this new dataset demonstrate that 
both models, when constrained by observational data, outperform their 
unconstrained counterparts, showing strong generalization in novel 
scenarios (Fig. 6). In the 4.75 m/s wind speed scenario, incorporating 
observed data and attention mechanisms improve estimation accuracy 
by 4.3 % and 1.8 %, respectively, resulting in a combined enhancement 
of 6.1 %. In the 8 m/s wind speed scenario, accuracy gains of 2.6 % and 
1.9 % are noted for models with observed data and attention mecha
nisms, respectively, culminating in a total increase of 3.8 %. In contrast, 
the Sensor-CNN-attention model shows a slight decrease in estimation 
accuracy of 0.2 % compared to the CNN model alone (Table 1). These 
findings underscore that the assessment performance of the models 
varies across different wind scenarios, with a noticeable decrease in 
efficacy under low wind speed conditions.

The training duration for the CNN-attention model is significantly 

Fig. 4. Variation of the autocorrelation (a) and partial autocorrelation (b) coefficients of CO from mobile observations with lag values, with shaded areas repre
senting the 95% confidence intervals. c depicts the change in incremental spatial autocorrelation coefficients for CO in relation to distance.
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reduced to just 17.8 min, achieving a speed increase by a factor of 57 
compared to the PALM simulation, and an estimated 98 % reduction in 
memory usage. This enhancement is attributed to the attention mech
anism’s parallel computation capabilities, which efficiently allocates 
resources to emphasize critical channel and spatial features while 
minimizing less significant ones. This strategic focus enhances the effi
ciency and precision of feature extraction within CNN models by 
effectively capturing interactions across different dimensions (Xie et al., 
2022). To improve the accuracy of urban air pollutant assessment under 
varying wind conditions, several advancements are necessary. Firstly, 
expending the dataset with more labeled pollutant concentrations across 
diverse meteorological scenarios and validating with long-term obser
vation data will bolster the model’s generalizability (Liao et al., 2023). 
Secondly, incorporating diverse data sources, including meteorological, 
topographical, and traffic-related information, can enhance the model’s 
responsiveness to environmental shifts through multimodal fusion. The 
current CNN model integrates meteorological data, but the absence of 
real-time meteorological field data curtails its ability to discern spatial 
meteorological features (LeCun et al., 2015). Lastly, combining tradi
tional atmospheric dispersion and chemical transport models with deep 
learning techniques will enhance the model’s estimation accuracy and 
enrich interpretative power, offering a more nuanced view of pollutant 
distribution both spatially and temporally.

3.4. Comparison of different ML models

This study benchmarks the estimation performance of a convolu
tional neural network (CNN) against traditional machine learning 
methods such as random forest (RF), XGBoost: Extreme Gradient 
Boosting (XGBoost), and linear regression (Table 2). The CNN out
performs RF, XGBoost, and linear regression with higher R2 and lower 
RMSE and mean absolute error (MAE) values, underscoring its ability to 
capture complex nonlinear patterns. While the integration of an atten
tion mechanism into the CNN marginally affects overall performance, it 
does enhance feature detection, generalization, and interpretability. 
Comparative analysis reveals that deep learning architectures, including 
CNNs, LSTMs, artificial neural networks (ANNs), and deep forests, 
deliver the most accurate estimation (Alimissis et al., 2018; Chen et al., 
2023; Feizi et al., 2023). Ensemble methods such as extra tree (ET), RF 
and Light Gradient Boosting Machine (Light-GBM) also show robust 
performance, as indicated by high R2 scores and low error metrics (Chen 
et al., 2023, 2024). Conversely, traditional machine learning models, 
such as multiple linear regression (MLR) and k-Nearest Neighbors 
(kNN), generally struggle with nonlinear complexities compared to deep 
and ensemble learning methods (Alimissis et al., 2018; Feizi et al., 
2023). Cerezuela-Escudero et al. (2023) demonstrated that feed-forward 
neural networks (FFNNs) outperform traditional geostatistical methods 
in spatially estimating CO concentrations and also marginally surpass 
vector machines (SVMs) in accuracy. However, the precision of these 
models is limited by meteorological conditions, such as thermal 

Fig. 5. Comparison of predicted average CO concentrations: CNN vs. CNN-attention models with and without observations constraints. “Sensor-CNN” indicates the 
CNN model enhanced with mobile observation data, while “Sensor-CNN-attention” refers to the integration of mobile observation data into the CNN-attention model. 
The convention applies hereinafter.
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inversions and low wind speeds, which induce rapid spatial variations in 
CO levels. To address this limitation, our study proposes the integration 
of CNN model with large eddy simulation model, which enables a more 
effectively capture of the microscale dynamics and fluctuations in 
pollutant concentrations, thus enhancing the model’s estimation 
accuracy.

3.5. Model interpretability

To further explore the attentional layer’s role in explaining the 
model’s mechanism, we examine the contribution of attention weights 
across different features. Fig. 7 shows the channel attention weight 
contributions for 64 filters in scenarios with and without observational 
constraints, at a wind speed of 4.75 m/s and a WSW wind direction. 
Fig. 7(1) shows that the attention mechanism de-prioritizes emissions 
and topography in response to lower observed CO concentrations, with a 

Fig. 6. Comparison of validation results for CNN vs. CNN-attention models with and without integration observation data.
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significant reduction in the weights assigned to emissions. This adjust
ment is primarily attributed to the fact that observed CO concentrations 
are influenced by both emissions and topography, prompting the 
attention mechanism to modulate the weight contributions for each, 
particularly in areas with secondary roads. Conversely, the attention 

mechanism increases the focus on emissions in areas with higher 
observed concentrations, such as major roads and within tunnels (Fig. 7
(2)). Additionally, the model is capable of dynamically adjusting the 
weights for topography and emissions, even when special terrain fea
tures do not align with high observed concentrations (Fig. 7(D4′)). 
Nevertheless, the model does have its shortcomings. In regions where 
observational data are sparse, the attention mechanism may adjust 
weights similarly, potentially reducing estimation accuracy (Fig. 7(5)).

Fig. 8 demonstrates the impact of the spatial attention layer on 
highlighting observed features. This layer precisely highlights CO con
centration signatures along major roads (Fig. 8A), and enhances atten
tion weights for distinctive areas and road structures, such as the 
Nanjing railway station and Hugu Road (Fig. 8B and C) (Zhang et al., 
2021). The model assigns increased weights in the high-traffic Xinjiekou 
district, where dense construction contributes to pollutant accumula
tion,. Additionally, the model allocates lower attention to secondary 
roads and neighborhood streets, reflecting the spatial and temporal 
distribution patterns of CO concentrations (Fig. 8D).

The study explores the attention mechanism’s role in detecting 
spatial features related to topography and emissions by comparing the 
distribution of spatial attention weights in the CNN-attention model, 
both with and without the constraint of observational data (Fig. 9). The 
inclusion of observational data enhances the model’s ability to recognize 
features such as ground elevation and building heights. The model 
notably assigns higher weights to the densely built Xinjiekou area, 
consistent with the higher CO concentrations observed there (Fig. 9E). It 
also recognizes and assigns increased weight to the Qingliangshan area 
due to its topography that hinders pollutant dispersion (Fig. 9I). After 
incorporating observational data, the topography weights’ contributions 
align more closely with actual topography features (Fig. S1), high
lighting the constraints imposed by the observational data on the model 
(Zhang et al., 2021). However, the model still exhibits limitations in 
identifying complex topographies, such as the area around Xuanwu 
Lake, which remains inadequately characterized.

Fig. 9C reveals a marked difference in emission attention weights, 
with the road’s left side initially exhibiting a higher weight. Yet, 
following a rotation, the right side presents increased weight. This shift 
corresponds with a transition to westerly winds, indicating that build
ings on the right of the road are taller than those on the left, thereby 
confirming the influence of building height on pollutant dispersion as 
estimated by the PALM model (Zhang et al., 2021). Moreover, the model 
assigns increased attention weights to distinct plume features over the 
northwestern of Xuanwu Lake (Fig. 9G and H) and specific urban 
structures such as overpasses, intersections, and Huju Road (Fig. 9J and 
K). It also assigns higher emission weights to the Xuanwu Lake area, 
positioned upwind of Central Road, where the westerly winds exacer
bate pollution levels, consistent with PALM simulation results (Fig. 9O). 
To further enhance the model’s estimation accuracy and generaliz
ability, future research should focus on improving the recognition of 
diverse land-use elements, including vegetation cover, and key points of 
interest such as schools and hospitals. These advancements will offer a 
more accurate data basis for assessing the impact of pollution on pop
ulation exposure risks (Wen et al., 2022).

3.6. Application to other cities

Given the absence of local mobile observation data and to ensure the 
accuracy and transferability of our models across diverse urban envi
ronments, we employ a CNN-attention model to estimate high- 
resolution air quality in the urban area of Dongguan (Fig. S4). For effi
ciency in time and computational resources, we select PALM simulation 
results for six different wind directions (NW, SE, E, N, S, and W) at a 
wind speed of 3 m/s in Dongguan. The model inputs include both 
topography and emission data, with the PALM outputs forming the 
training dataset (Fig. S5). We conduct training and evaluation using 10- 
fold cross-validation. Fig. S6 offers a comparative analysis of the 

Table 1 
Evaluation metrics for CNN and CNN-attention models with and without 
observation constraints.

Models Indicators SSE, 2 m/ 
s

WSW, 4.75 
m/s

NNE, 8 m/ 
s

CNN R2 0.806 0.830 0.672
RMSE, mg/ 
m3

0.529 0.163 0.156

CNN-attention R2 0.801 0.835 0.684
RMSE, mg/ 
m3

0.561 0.160 0.152

Sensor-CNN R2 0.795 0.837 0.687
RMSE, mg/ 
m3

0.588 0.156 0.153

Sensor-CNN- 
attention

R2 0.802 0.842 0.693
RMSE, mg/ 
m3

0.530 0.153 0.150

Table 2 
Comparison of the results of different machine learning models for CO 
assessment.

Models R2 RMSE, mg/ 
m3

MAE, mg/ 
m3

References

CNN 0.67- 
0.84

0.20-0.56 0.18 This research

CNN- 
attention

0.68- 
0.84

0.15-0.17 0.17

ET 0.68 0.40 0.22 Chen et al. (2023)
RF 0.63 0.42 0.23
XGBoost 0.61 0.45 0.25
Light-GBM 0.69 0.40 0.22
Deep-Forest 0.75 0.35 0.17

SW-K 0.53 0.21 – Lu et al. (2021)
PLS-K 0.38 0.24 –
ML-K 0.71 0.16 –

RF 0.41 0.12 0.01 Miao et al. (2024)
GBDT 0.72 0.10 – Liu et al. (2021)
NN 0.70 0.31 0.18 Rakholia et al. (2023)
MLPR 0.62 – – Fabregat et al. (2022)

FFNNs 0.51- 
0.83

0.26-0.81 0.14-0.62 Alimissis et al. (2018)

MLR 0.50- 
0.82

0.28-1.06 0.14-0.90

ANN 0.77 0.06 0.05 Nourani et al. (2021)
SVM – 0.03 0.02 Xu et al. (2017)
ANFIS 0.55- 

0.79
0.13-0.6 – Prasad et al. (2016)

ANN – 0.28-0.34 0.18-0.23 Feizi et al. (2023)
kNN – 0.26-0.53 0.17-0.33
SVR – 0.22-0.39 0.14-0.26
LSTM – 0.19-0.43 0.13-0.33

FFNNs 0.57 0.16 0.09 Cerezuela-Escudero et al. 
(2023)SVM 0.49 0.18 0.09

ET 0.68 0.18 0.11 Chen et al. (2024)

Note: ET: extra tree; RF: Random Forest; XGBoost: Extreme Gradient Boosting; 
Light-GBM: Light Gradient Boosting Machine; SW-K: Stepwise Regression +
kriging; PLS-K: Partial Least Squares + kriging; ML-K: Machine Learning +
kriging; GBDT: Gradient Boosting Decision Tree; NN: Neural Network; MLPR: 
Multilayer Perceptron Regressor; FFNN: Feed-forward Neural Network; MLR: 
Multiple Linear Regression; ANN: Artificial Neural Network; SVM: Support 
Vector Machine; ANFIS: Adaptive neuro-fuzzy inference system; kNN: k-Nearest 
Neighbors; SVR: Support Vector Regression. “-” represents no data.
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estimation performance and error between the CNN and CNN-attention 
models for the six scenarios in Dongguan. Results show that the atten
tion mechanism significantly improves the model’s CO estimation ac
curacy across varying conditions, with correlation coefficients (R) from 
0.684 to 0.807 and RMSE ranging from 0.243 mg/m3 to 0.288 mg/m3. 
Notably, the SE and NW wind scenarios achieve higher correlation 
values (0.807 and 0.804, respectively) compared to other wind condi
tions at a wind speed of 3 m/s. The incorporation of the attention 

mechanism boosts the CNN-attention model’s estimation precision by 
10.9 %–25.7 %, indicating an enhancement in its generalization ability. 
Although the performance gain on the Nanjing city evaluation dataset is 
modest, likely because the model captures certain general features, the 
improved generalization becomes more apparent when applied to a new 
environment like Dongguan. This adaptability leads to a more signifi
cant performance boost when confronted with novel data distributions.

Fig. S7 depicts the proportion of filters in the model that accentuate 

Fig. 7. Contribution proportions of attention weights for different feature channels in Nanjing with and without observation constraints: A, B, and C represent with 
the observation data, while D and E represent without the observation data.

Fig. 8. Contribution of attention layer weights to observational feature space in CNN-attention model.
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Fig. 9. Spatial attention layer weight contributions of topography and emissions in the CNN-attention model with and without observation data.

Fig. 10. Spatial attention weight contribution of different features after integrating the attention mechanism in Dongguan city. A, B, C, and D represent terrain 
weight contributions; while E, F, G, and H represent emission weight contributions.
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topography and emission features after integrating the attention 
mechanism. This integration enables the model to dynamically shift its 
focus across different channels. The model clearly prioritizes terrain 
information through the channel attention mechanism. as terrain fea
tures are highlighted in more channels than emission features—17 
versus 11—with an attention score above 0.01. This emphasis largely 
arises from the impact of topographical variations, particularly building 
heights, in generating atmospheric turbulence that affects pollutant 
concentration distribution (Fu et al., 2017).

Fig. 10C shows that the spatial attention layer preferentially focuses 
on areas with eleveted baseline topography and notable locations, such 
as Huangqishan park. Additionally, the model identifies building height 
as a key factor influencing CO concentration (Zhang et al., 2021). In 
Dongguan, the distribution of building height displays a scattered 
pattern of high-rise structures (Fig. S5). The model detects significant 
height variations between buildings, which can intensify atmospheric 
turbulence and lead to pollutant accumulation, thereby marking these 
areas accordingly (Fig. 10D) (Zhang et al., 2021). Furthermore, the 
model differentiates between emissions from major and minor roads, 
assigning higher attention scores to the former and noting the impact of 
varying building heights adjacent to these roads (Fig. 10E and F). It also 
closely examines road intersections, a feature identification trend 
observed in Nanjing as well (Fig. 10G). This selective focus highlights 
the model’s sophisticated approach to feature prioritization, contrib
uting to its enhanced estimation accuracy.

4. Conclusions

To enhance the estimation capabilities of our model for urban air 
quality, we integrate an attention mechanism into the CNN model and 
use mobile observation data as constraints, achieving high-resolution 
and rapid, accurate estimation of urban pollutants. Our findings indi
cate that the inclusion of observational data improved the CNN model’s 
accuracy by margins ranging from 1.8 % to 4.3 %. Moreover, the synergy 
of the attention mechanism with the CNN further increases estimation 
accuracy by 3.8 %–6.1 %. The attention mechanism adeptly emphasizes 
various features, thereby enhancing the model’s proficiency in pin
pointing critical attributes, such as major emission sources including 
highways and arterial roads, along with distinctive topography features. 
This refinement not only boosts the model’s estimation accuracy but also 
substantially increases its interpretability. When applied to air quality 
estimation in various urban environments, the enhanced model dem
onstrates improvements in accuracy between 10.9 % and 25.7 %, 
underscoring its robustness and transferability.

Despite its effectiveness, the CNN-attention model face certain lim
itations. One such limitation is its reliance on mobile observations, 
which can introduce uncertainty due to the sparse and uneven coverage 
provided by taxis. Additionally, integrating results from the PALM into 
the CNN-attention framework adds its own layer of inherent uncer
tainty. The complexity introduced by the attention mechanism also 
raises the risk of overfitting. To address these issues, future research 
should focus on enhancing the model’s capacity to assimilate dynamic 
observational data more effectively. This could involve incorporating 
long-term observational datasets, diversifying simulation inputs from 
various urban environments, and applying advanced regularization 
techniques to reduce uncertainty and prevent overfitting. Moreover, 
enriching the model with a LSTM (Seng et al., 2021) and an atmospheric 
chemical transport model (CTM) could more effectively capture the 
nonlinear dynamics of atmospheric chemistry and physics. Such en
hancements could improve the precision of estimation and computa
tional efficiency (Xing et al., 2020).
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