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Abstract. The development of low-cost sensors and novel
calibration algorithms provides new hints to complement
conventional ground-based observation sites to evaluate the
spatial and temporal distribution of pollutants on hyper-
local scales (tens of meters). Here we use sensors deployed
on a taxi fleet to explore the air quality in the road net-
work of Nanjing over the course of a year (October 2019–
September 2020). Based on GIS technology, we develop a
grid analysis method to obtain 50 m resolution maps of major
air pollutants (CO, NO2, and O3). Through hotspot identifi-
cation analysis, we find three main sources of air pollutants
including traffic, industrial emissions, and cooking fumes.
We find that CO and NO2 concentrations show a pattern:
highways> arterial roads> secondary roads> branch roads
> residential streets, reflecting traffic volume. The O3 con-
centrations in these five road types are in opposite order due
to the titration effect of NOx . Combined the mobile mea-
surements and the stationary station data, we diagnose that
the contribution of traffic-related emissions to CO and NO2
are 42.6 % and 26.3 %, respectively. Compared to the pre-
COVID period, the concentrations of CO and NO2 during the
COVID-lockdown period decreased for 44.9 % and 47.1 %,
respectively, and the contribution of traffic-related emissions
to them both decreased by more than 50 %. With the end of
the COVID-lockdown period, traffic emissions and air pol-
lutant concentrations rebounded substantially, indicating that
traffic emissions have a crucial impact on the variation of air
pollutant levels in urban regions. This research demonstrates
the sensing power of mobile monitoring for urban air pollu-
tion, which provides detailed information for source attribu-

tion, accurate traceability, and potential mitigation strategies
at the urban micro-scale.

1 Introduction

Urban air pollution poses a serious health threat with> 80 %
of the world’s urban residents exposed to air pollution levels
that exceed the World Health Organization (WHO) guide-
lines (WHO, 2016). The global urban air pollution (mea-
sured by PM10 or PM2.5) also increased by 8 % during recent
years despite improvement in some regions (WHO, 2018).
Extremely large spatial variability exists for urban air pol-
lutants (e.g., carbon monoxide, CO; nitrogen dioxide, NO2;
and ozone, O3) over scales from kilometers to meters, as a re-
sult of complex flow patterns, non-linear chemical reactions,
and unevenly distributed emissions from vehicle and indus-
trial activities (Apte et al., 2017; Miller et al., 2020). Here we
illustrate an approach to obtain a high-resolution urban air
quality map using low-cost sensors deployed on a routinely
operating taxi fleet.

High spatiotemporal resolution air quality data are criti-
cal to urban air quality management, exposure assessment,
epidemiology study, and environmental equity (Apte et al.,
2011, 2017; Boogaard et al., 2010). Numerous method-
ologies have been developed to obtain urban air pollutant
concentrations, including stationary monitoring networks
(Cavellin et al., 2016), near-roadway sampling (Karner et
al., 2010; Zhu et al., 2009; Padro-Martinez et al., 2012),
satellite remote sensing (Laughner et al., 2018; Xu et al.,
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2019), land use regression (LUR) models (Weissert et al.,
2020), and chemical transport models (CTMs) (Li et al.,
2010). However, the stationary monitoring stations (includ-
ing near-roadway sampling) are sparsely and unevenly dis-
tributed, and the ability to reflect the details of urban air pol-
lution is limited, especially at remote communities (Snyder et
al., 2013). Remote sensing and CTMs are generally spatially
coarse (∼ km resolution) and cannot resolve species that are
inert to radiative transfer (e.g., mercury and lead) or without
known emission inventory and/or chemical mechanisms. A
LUR model can estimate concentrations at high spatial reso-
lution, but it provides limited temporal information, and the
predicting power is poor in areas with specific local sources
(Kerckhoffs et al., 2016).

Mobile monitoring is a promising approach to garner high-
spatial-resolution observations representative of the commu-
nity scale (Miller et al., 2020; Hasenfratz et al., 2015). Dif-
ferent vehicle platforms are used for mobile monitoring, in-
cluding minivans (Isakov et al., 2007), bicycles (Bart et al.,
2012), taxi (O’Keeffe et al., 2019), Street View cars (Apte et
al., 2017), and city busses (Kaivonen and Ngai, 2020). How-
ever, the scale of deployment and subsequent data coverage
are limited by the cost of the observation instrument (Boss-
che et al., 2015). This issue has been addressed by the devel-
opment of low-cost sensors that are calibrated with machine-
learning-based algorithms (Miskell et al., 2018; SM et al.,
2019; Lim et al., 2019). The emergence of low-cost air mon-
itoring technologies was recognized by the US EPA (Snyder
et al., 2013) and European Commission (Kaur et al., 2007)
and was also recommended to be incorporated in the next Air
Quality Directive (Borrego et al., 2015). For example, Weis-
sert et al. (2020) combined land use information with low-
cost sensors to obtain hourly O3 and NO2 concentration dis-
tribution at a resolution of 50 m. High agreements were also
found between well-calibrated low-cost sensor systems and
standard instrumentations (Chatzidiakou et al., 2019; Hagan
et al., 2019).

The objective of this study is to illustrate the sensing power
of low-cost sensors deployed on a routinely operating taxi
fleet platform in a megacity. We combine mobile observa-
tions and a geographic information system (GIS) to obtain
the hourly distribution of multiple air pollutant concentra-
tions at 50 m resolution. By comparing these to the mea-
surements from background sites, the contribution of traf-
fic emission to urban air pollution is also diagnosed. We
explore the influencing factors of pollutant levels including
time of the day, day of the week, and holidays. Moreover,
our sampling period covered the outbreak of COVID-19 in
China. The pandemic lockdown had a tremendous impact on
the socio-economic activities especially the traffic sector, and
subsequently the air quality (Zhang et al., 2021; Huang et al.,
2021). We evaluate how urban air quality changes in differ-
ent periods of the pandemic and explore the impact of traffic-
related emissions.

2 Materials and methods

2.1 Mobile monitoring

We use the mobile sampler XHAQSN-508 from Hebei Sail-
hero Environmental Protection High-tech Co., Ltd. (Hebei,
China) to measure the air quality in the Nanjing urban area.
The instrument is equipped with internal gas sensors for
CO (model XH-CO-50-7), NO2 (XH-NO2-5AOF-7), and
O3 (XH-O3-1-7) (dimensions: 290× 81× 55 mm; weight:
1.0 kg) as well as two small in-built sensors for temperature
and relative humidity and is fixed in the top lamp support
pole (∼ 1.5 m above ground) of two Nanjing taxis (Fig. 1).
Two taxis fueled with electricity and liquefied natural gas
(one each) are selected to reduce the impact of emissions
from the sampling vehicles themselves. All three sensors
are electrochemical, which based on a chemical reaction be-
tween gases in the air and the electrode in a liquid inside a
sensor that can detect gaseous pollutants at levels as low as
parts per billion (Maag et al., 2018). Sensors are continuously
powered by an external DC 12 V power supply provided by
a taxi battery. The sample is refreshed by pumping air to the
sensors. There is an air inlet at the bottom of the instrument,
which is also checked periodically to avoid blockage. Be-
cause it is fixed in the taxi top lamp, it can reduce the impact
of different wind direction airflow. This device integrates
components for data integration, processing, and transmis-
sion and provides data management, quality control, and vi-
sualization functions. Pollutant concentration data are gener-
ated by different voltage values sensed by gas sensors, which
are automatically uploaded to a database in the cloud via the
4G telecommunications network. We continuously measured
the concentration of CO, NO2, and O3 in the street canyon in
the urban area of Nanjing (with the center located at 32.07◦ N
and 118.72◦ E) for a whole year (1 October 2019–30 Septem-
ber 2020). An instantaneous measurement of CO, NO2, and
O3 concentrations is configured to continuous measurements
at a frequency of once per 10 s sampling interval, and their
limits of detection are 0.01 µmolmol−1, 0.1 nmol mol−1, and
0.1 nmol mol−1, respectively. The sampling routes were rel-
atively random during taxi operations and were mainly on
the arterial roads. A GPS device (u-blox, Switzerland) is uti-
lized to record the spatial coordinates, and the spatial offsets
are corrected by ArcGIS 10.2 software. Generally, the sam-
pling campaign is conducted on both weekdays and week-
ends from 06:00 to 22:00 local time (LT). Occasionally the
taxi drivers work for the night shift, and the instruments
are run from 22:00 to 06:00 LT. The collected data cover
373 km2 with a population of 6 million (Fig. 1).

2.2 Sensors calibration and validation

Different from traditional instruments, low-cost sensors
have some limitations, such as nonlinear response, signal
drift, environmental dependencies, low selectivity, and cross-
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Figure 1. Location of the monitoring areas in the city of Nanjing (left) and photo of instrument installment (right). Red stars are the locations
of stationary stations belonging to the national air quality measurement network of China. These stations cover different functional regions
of the city: A, B, C, D, E, F, and G represent industrial, cultural and educational, commercial, traffic, residential, ecological park, and new
urban areas, respectively. Map credit: ESRI 2020.

sensitivity, so it is important that calibration procedures are
applied with respect to these limitations (Maag et al., 2018;
Lösch et al., 2008). For example, environmental conditions
are known to cause nonlinear behavior of sensors (Popoola
et al., 2016). Due to aging and impurity effects over a long
time, low-cost sensors are prone to signal drift and low sensi-
tivity (Kizel et al., 2018). In addition, cross-sensitivities dif-
fer largely according to the ambient temperature and level of
gas the sensor is being exposed to (Lösch et al., 2008). So,
multi-parameter joint calibration training is utilized to reduce
the interference issue between air pollutants in our research,
including air pollutant concentrations, temperature, and rela-
tive humidity. The sensors are usually trained with co-located
data collected by reference methods before being deployed
to actual measuring campaigns (Kaivonen and Ngai, 2020;
Chatzidiakou et al., 2019; Bossche et al., 2015).

The XHAQSN-508 is calibrated every month starting from
September 2019. The instrument is placed at the outdoor
Station for Observing Regional Processes of the Earth Sys-
tem (SORPES) in the Xianlin Campus of Nanjing University
(https://as.nju.edu.cn/as_en/obsplatform/list.htm, last access:
22 May 2021) for at least seven days before the taxi be-
gan sampling. The collected data are calibrated against stan-
dard instruments (Thermo Fisher Scientific 48i, 42i, and 49i,
USA, for CO, NO2, and O3, respectively). The instrument
precision is ±2 ppbv for O3 and ±1 % and ±4 % for CO and
NO2, respectively, which have been used in many other stud-
ies and found to perform well for long-term runs (Ding et
al., 2013; Herrmann et al., 2013). One drawback of our study

is that the air pollutant concentrations observed at SORPES
are lower than those observed in a road environment, which
might cause issues for the calibration process. Comparing
different calibration models, we found that a machine learn-
ing algorithm can improve sensor–monitor agreement with
reference monitors, and many previous studies have used this
method (Qin et al., 2020; Esposito et al., 2018; Vito et al.,
2018). A supervised machine learning methodology based
on the gradient boost decision tree (GBDT) is used for data
calibration (Johnson et al., 2018). GBRT, an ensemble learn-
ing method, is a decision-tree-based regression model that
implements boosting to improve model performance using
both parameter selection and k-fold cross-validation. GBRT
needs to be trained by the dataset with target labels (Yang
et al., 2017). It takes input variables including raw signals
of sensors, air pollutant concentrations (CO, NO2, and O3),
temperature, and relative humidity. The stationary instrument
data are taken as training targets. The parameters of the ma-
chine learning model are adjusted continuously based on a
gradient descent algorithm. The R2 of the calibration results
is generally high (> 0.90) for all the three air pollutants (e.g.,
Fig. 2a).

The success of supervised model training with target la-
bels (i.e., co-located with SORPES, Fig. 2a) does not guar-
antee its predicting power for conditions without labels
(i.e., on roads or co-located with SORPES but not feed-
ing the station data to the algorithm; Fig. 2b). We use a
calibration–validation methodology to evaluate the perfor-
mance of the calibrated sensors (Chatzidiakou et al., 2019).
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This method includes two phases: first, the sampler was cali-
brated against the SORPES station for 10 d (1–10 June 2020),
and the sensor data were used for sensor algorithm train-
ing as described above (Fig. 2a); second, we continued to
place the sampler in the station (11–17 June 2020). How-
ever, the sensor data are not used for calibration but directly
fed in the algorithm trained in the first phase. The results
are compared with the station data (i.e., validation phase;
Fig. 2b). We find that the sensor data agree well with standard
instrumentation in the second phase. The sensor-retrieved
CO, NO2, and O3 concentrations are 0.58± 0.12 mg m−3,
8.40± 4.30 µgm−3, 27.3± 16.5 µgm−3 respectively, not sig-
nificantly different from those measured by standard in-
struments (0.50± 0.10 mg m−3, 10.5± 6.31 µgm−3, and
32.4± 20.2 µgm−3) (α = 0.05, ANOVA analysis). The R2

values generally remain high (0.82–0.97) for different air
pollutants (CO and O3) except for NO2 (R2

= 0.67). The
lower R2 value for NO2 may be associated with the higher
humidity during the validation period (13–16 June 2020). As
NO2 is water dissolvable, high relative humidity may lead to
a low bias for sensors (Wei et al., 2018). To improve perfor-
mance of the NO2 model, temperature and relative humidity
have also been involved in the training algorithm. However,
the interaction between O3 and NO2 may influence the de-
tection accuracy of these two chemicals, especially for NO2
(Ivanovskaya et al., 2001). The accuracy of the sensor gen-
erally decreases with time (a.k.a. aging) due to the evapo-
ration of the electrolyte (Ribet et al., 2018). However, we
find no significant decrease in the R2 values for the three
pollutants during our campaign. It seems that the machine-
learning algorithm could successfully compensate the aging
of the sensors. Field calibration of low-cost sensors is still
a challenging task, as it is greatly affected by atmospheric
composition and meteorological conditions (Spinelle et al.,
2017; Castell et al., 2017). Our results have high R2 values
compared to previous studies, indicating relatively high ac-
curacy (e.g., Castell et al., 2017). The results from the two
sensors also agree with each other reasonably well, with R2

values ranging 0.97–0.99 for a linear regression. Their data
are thus combined in the following analysis to achieve max-
imum data coverage. Overall, the sensor results have sub-
stantial uncertainty compared to reference methods. We thus
focus on the relative temporal and spatial distributions rather
than the absolute concentrations.

2.3 Data processing

As the mobile monitoring platform samples along the tra-
jectories of carrying vehicles, we need to sacrifice either the
temporal information to calculate the spatial distribution of
air pollutants, or the spatial information to temporal varia-
tions. Similar approaches have also been adopted by previous
studies (Bossche et al., 2015; Apte et al., 2017; Farrell et al.,
2015). To generate the spatial distribution of air pollutants at
high spatial resolution, we divide the research area into grids

with 50 m× 50 m resolution and calculate the mean values
of the samples collected in each grid. The driving condition
is highly variable and the taxi can travel more than 50 m in
10 s if the vehicle speed is over 18 km/h. However, given
the complexity of the driving conditions, we ignore the vehi-
cle trajectory in the past 10 s but assign the measured values
to the location of the vehicle at the time of data uploading.
Then, combined with GIS technology, we calculate the aver-
age of all the data points over one year that fall in the same
grid. One drawback of our study is the impact of spike con-
centrations on sensor performance. The sensors keep report-
ing high concentrations in an approximate 1 min period after
exposure to large environmental concentration spikes. This
effect would reduce the effective resolution of our gridded
concentration map. Similarly, we calculate the hourly aver-
age concentrations by considering only the data sampled in
the same hour of different days. The GPS signal is missing
when the taxis pass through the nine underground tunnels in
Nanjing (e.g., Xuanwu lake tunnel and Jiuhuashan tunnel in
the city center; Fig. 3). We assume the taxies travel at a con-
stant speed and the sampling points are uniformly allocated
along the tunnels. We use the ArcGIS 10.2 software for data
processing. To calculate the air pollutant concentrations (CO,
NO2, and O3) of different road types and the contribution of
traffic emissions to them, we divide the urban roads in Nan-
jing area into six types, including highways, arterial roads,
secondary roads, branch roads, residential streets, and tun-
nels (https://wiki.openstreetmap.org/wiki/Key:highway, last
access: 21 January 2021). The roads and land use data of
Nanjing shown in Fig. 3 are based on OpenStreetMap (Open-
StreetMap contributors, 2020).

2.4 Traffic source attribution

The mobile platform keeps sampling in the urban road net-
work which carries a strong signal from traffic sources. By
contrast, stationary stations are often located far away from
major roads to represent a regional background air pollu-
tion level (Hilker et al., 2019). Seven state-operated air qual-
ity observation stations in Nanjing are selected in our re-
search, including Maigaoqiao, Caochangmen, Shanxi Road,
Zhonghuamen, Ruijin Road, Xuanwu Lake, and the Olympic
Sports Center (Zhao et al., 2015; Zou et al., 2017), which
are far away from major roads and large point sources, so
they are usually used as regional backgrounds in different
functional areas (Zou et al., 2017; An et al., 2015). For ex-
ample, Zou et al. (2017) chose the Olympic Center station
(G in Fig. 1) to get the background characteristics of CO and
NO2 in Nanjing. Therefore, the normalized contribution from
traffic-related emissions can be obtained by differencing the
mobile measurements and the stationary ones to minimize
the influence of daily meteorological variations on the urban
air quality, following Bossche et al. (2015):
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Figure 2. Sensor performance evaluated by a calibration-validation methodology for CO, NO2, and O3. (a) Calibration period (1–
10 June 2020); (b) validation period (11–17 June 2020). The time series plots compare the concentrations measured by the co-located
sensors and standard instruments, while the scatterplots show pollutant concentrations and linear regressions between them.

Figure 3. Locations of tunnels in Nanjing urban area. © Open-
StreetMap contributors 2019. Distributed under a Creative Com-
mons BY-SA License.

APtraffic,ij = (APij −APmin)/APij , (1)

where APtraffic,ij represents the air pollutant concentration
contributed by traffic emissions for the ith pollutant at time
j (%); APij is the sensor-measured concentration of air pol-
lutants; and APmin means the ambient background concen-
tration, which is calculated as the minimum of the measure-
ments from all the stations in Nanjing in the national air qual-
ity network without major sources within a direct vicinity of
50 m (https://quotsoft.net/air/, last access: 1 November 2020,

Fig. 1). We refer to this method as the “background site”
(BS).

We also adopt a method similar to Apte et al. (2017) for
traffic source attribution. This method includes a peak de-
tection algorithm to calculate the contribution of local traf-
fic emission sources to on-road pollutant concentrations. We
calculate the mean and minimum of air pollutant concentra-
tions in each grid as the “peak” and “baseline”, respectively.
The difference between the two is considered as the contri-
bution from traffic sources. We refer to this method as “peak
detection” (PD). MATLAB R2019a is used for such data cal-
culation.

3 Results and discussion

3.1 Effect of spatial resolution on reproducibility

There is a trade-off between the resolution of an air pol-
lutant concentration map and its reproducibility; i.e., high-
resolution maps are subject to large randomness due to the
limited number of samples in each grid. We investigate the
consistency of spatial patterns of different resolution (10–
100 m). We calculated the standard error of the means of
samples in each grid (SEM) and then averaged the SEM over
all grid cells:

SEM= σ/
√
n, (2)

where σ and n are the standard deviation and number of sam-
ples in each grid, respectively. We find the calculated SEM
first decays rapidly with the grid spacing but tends to be in
a regime of linear decay after a resolution of approximately
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Figure 4. Relationship between grid resolution and the domain-
averaged standard error of the mean of samples in each grid (SEM)
for CO, NO2, and O3.

50 m for all the three air pollutants (Fig. 4). Therefore, we
choose a resolution of 50 m, which is consistent with pre-
vious studies (Bossche et al., 2015; Apte et al., 2017). For
example, Bossche et al. (2015) used a spatial resolution of
20–50 m to map urban air quality and identify hotspots. Apte
et al. (2017) found that reproducible results (with high pre-
cision and low bias) of NO, NO2, and black carbon can be
generated by at least 10–25 repetitions in a specific area with
30 m median spatial aggregation.

3.2 Road network coverage

A total of 1.32 million pieces of data were obtained dur-
ing the observation period, which covers 66.4 % of the ma-
jor roads in Nanjing in the sampling domain with a large
repeat-visit frequency (median repetition = 61 (14 and 264
as the lower and upper quartiles, respectively, the same here-
inafter)) (Fig. 5a). The type of road with the most visits is
the Neihuan lines (258 (116, 526)), followed by the arterial
roads (125 (35, 393)), secondary roads (151 (24, 442)), and
highways (34 (12, 115)). The residential streets (22 (6, 100))
have the fewest visits.

Apart from the areas without roads, such as the Yangtze
River, Xuanwu Lake, and Purple Mountain, the data cover
43.5 % of the 50 m grids in the research area with the two
taxis contributing 36.8 % and 37.2 %. As shown in Fig. 5b,
the median number of repeated frequency in each grid is 66
(18, 286), with the highest value of 15 449 in Nanjing South
Railway Station and the lowest in some residential roads (1).
The repeated frequencies in each 50 m grid along the arte-
rial roads and Neihuan line are higher than other types of
roads, i.e., Zhongyang road, Huju road, Neihuandong, and
Neihuanxi lines (Fig. 5b). Our repeated frequency is gener-

ally higher than previous research on mobile monitoring of
urban air pollution (Peters et al., 2013; Poppel et al., 2013;
Bossche et al., 2015; Apte at al., 2017), which can lower the
uncertainty of our results. By comparing the time series of
the air pollutant concentrations with that from nearby state-
operated air quality observation stations (A′ and E′, with re-
peated frequencies > 500), we find that the results are con-
sistent (Fig. S1 in the Supplement), which shows the stability
and reliability of our data.

3.3 Variability analysis

Figures 6 and S2 show the coefficients of variation (CV ≡
standard deviation /mean × 100 %) for different air pollu-
tants in each grid. For one thing, this matrix quantifies the
sensing power of mobile monitoring, i.e., more data points
reduce the uncertainty of observations. For another, it reflects
the inherent variability of pollutants caused by factors such
as meteorological conditions and hotspot emission sources.
We find that the CV values are lower than 100 % on the main
roads, including highways and arterial roads, but higher than
100 % on some tunnels, residential streets, and Nanjing rail-
way station. As discussed above, the road network coverage
is much higher over the main roads than smaller roads. This
indicates that increasing the sampling numbers within sec-
ondary and residential roads is the most useful way to reduce
the uncertainty of mobile observation. It is also interesting to
note that a single taxi has a data coverage of ∼ 37 % but the
second one only increases it by∼ 6.5 % to 43.5 %, which im-
plies that the marginal increase in spatial coverage decreases
substantially with an increasing number of sensors. This is
indeed one limitation of our monitoring platform, and a much
larger fleet size or different sampling platforms (e.g., bikes)
may be needed to reduce the uncertainty over these smaller
roads.

Although the spatial patterns of CV are similar for dif-
ferent air pollutants, we find generally higher CV for O3
(67.3 %) and NO2 (59.5 %) than CO (51.6 %). This is as-
sociated with the spatial and temporal variability of differ-
ent air pollutants, which are influenced by their lifetimes in
the atmosphere. Lifetime (or residence time) is the average
time for a chemical compound that is transported in the at-
mosphere before it is deposited or consumed by chemical
reactions. It is associated with its spatial scale of variabil-
ity. The longer the lifetime, the more uniformly the concen-
trations are distributed. The chemical properties of CO are
the most stable in the environment (τ = 1–2 months), and its
spatial concentration difference is more affected by the sam-
pling time and the number of samples. The lifetime of NOx
is shorter (τ = 2–11 h, Romer et al., 2016), so the measured
concentrations are more influenced by local or “hotspot”
emissions and meteorological factors. O3 has the shortest
lifetime (τ =∼ 1 h in urban atmosphere, McClurkin et al.,
2013) among the three pollutants. The level of ozone is af-
fected by its precursors (NOx and VOCs), which both have
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Figure 5. Mobile monitoring data coverage with regard to roads (a) and 50 m grids (b). © OpenStreetMap contributors 2019. Distributed
under a Creative Commons BY-SA License.

Figure 6. Spatial distribution of coefficient of variation for CO
in 50 m grids in research domain. © OpenStreetMap contributors
2019. Distributed under a Creative Commons BY-SA License.

large variability (Sharma et al., 2016). The complex chemical
reactions also increase its spatial heterogeneity.

3.4 Spatial distribution

3.4.1 Hotspot identification

Although the instantaneous pollution level varies drastically
in different road environments, we obtain a relatively robust
time-integrated pollution estimate by calculating the mean
of repeated samples (Fig. 7). We define the area where the
pollutant concentrations are 50 % higher than nearby grids
(radius = 300 m) as “hotspots” following Apte et al. (2017).
The pollutant concentrations shown in Table 1 are the val-
ues after deducting the background concentration, which are
calculated by the annual mean concentration of stationary

stations. A total of 17 hotspots for CO and NO2, and 17
hotspots for O3 are identified, and the specific information
is shown in Fig. 7 and Table 1. Most of the “hotspots” show
relatively apparent spatial “peaks” for multiple pollutants.
To identify the main sources contributing to these hotspots,
we use the different relative concentrations of the measured
pollutants (Zhao et al., 2015). We also use field informa-
tion around hotspot areas, such as the existence of subway
stations, construction sites, factories, and restaurants nearby.
This method has substantial uncertainties in terms of the at-
tribution of the potential sources to these “hotspots”, and
further source–receptor relationships and detailed chemical
component analyses are required to identify the exact emis-
sion sources.

We find that “hotspots” are mainly affected by one of
the three types of emission sources, namely traffic emis-
sions (diesel and gasoline on-road vehicle exhaust), indus-
trial emissions, and cooking fumes. The mean CO and
NO2 concentrations are relatively high at the crossroads (E,
1.47 mg m−3 and 15.8 µgm−3), tunnels (B, 1.24 mg m−3 and
16.6 µgm−3, respectively), the roads near the hospital (H,
0.66 mg m−3 and 15.7 µgm−3), and near the railway sta-
tion (A, 0.60 mg m−3 and 4.0 µgm−3), which are affected
by on-road traffic emissions. In addition, due to the con-
struction of Maigaoqiao subway station (G, 0.91 mg m−3 and
11.8 µgm−3), diesel vehicles and off-road traffic emission
also make a great contribution to CO and NO2 concentra-
tions. Industrial emissions from petrochemical enterprises (I)
also lead to high NO2 concentrations (0.26–93.1 µgm−3) on
surrounding roads.

As shown in Fig. 7, the higher O3 concentrations in these
hotspot areas are mainly caused by higher NOx and VOC
emissions from the heavy traffic (W, 46.8± 27.4 µgm−3;
Xie et al., 2016; Ding et al., 2013), cooking emissions
(Q, 38.5± 26.0 µgm−3), and ozone precursors from in-
dustrial emissions (e.g., K, 47.1± 36.5 µgm−3, and J,
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37.6± 25.8 µgm−3), such as VOCs. In addition, bio-
genic VOC emissions also have a significant impact on
the formation of ozone (U, 40.4± 18.3 µgm−3, and V,
33.5± 20.4 µgm−3; Liu et al., 2018). Taxi sensor data also
reveal the secondary pollution characteristics at the micro-
scale, showing that O3 concentration in the downtown area
with dense buildings is significantly higher than that in other
areas, especially some residential areas in Jianye and Gulou
district. Previous studies have also found that the air pollutant
“hotspots” are associated with traffic-related emissions (e.g.,
heavy-duty diesel vehicles, Targino et al., 2016, and vehicle
congestion, Gately et al., 2017) and high-density urban areas
(Li et al., 2018). These identified air pollution “hotspots”,
and the diagnosed source contributions provide helpful in-
formation for urban air quality management, which demon-
strates the sensing power of mobile monitoring deployed on
a taxi fleet.

3.4.2 Air pollutant concentrations in different types of
roads

We find that air pollutant levels differ vastly among the
six types of roads (p < 0.05, with the ANOVA method).
The mean CO and NO2 concentrations follow this trend:
tunnels (2.22± 1.18 mg m−3 and 40.7± 29.7 µgm−3,
respectively) > highways (1.10± 0.59 mg m−3 and
29.2± 8.66 µgm−3) > arterial roads (0.958± 0.308 mg m−3

and 25.0± 6.90 µgm−3) > secondary roads
(0.855± 0.401 mg m−3 and 21.8± 8.89 µgm−3) > branch
roads (0.818± 0.216 mg m−3 and 20.3± 6.79 µgm−3)
> residential streets (0.783± 0.299 mg m−3 and
19.7± 8.35 µgm−3) (Table 2). However, the mean
O3 concentrations in different types of roads are
opposite to that of CO and NO2: residential streets
(35.1± 15.4 µgm−3) > branch roads (32.7± 12.2 µgm−3)
> secondary roads (31.9± 10.0 µgm−3) > arterial roads
(29.6± 7.52 µgm−3) > highways (23.3± 9.12 µgm−3) >
tunnels (15.7± 7.85 µgm−3).

The differences of air pollutant concentrations among dif-
ferent road types are firstly affected by the traffic-related
emission sources including vehicle engine exhaust, which is
a function of traffic flow and speed, vehicle type, etc. (Sa-
hanavin et al., 2018). The general decreasing trends we ob-
served for CO and NO2 are consistent with traffic flow and
the congestion index in the Nanjing urban area (Table 2, Zou
et al., 2017). Apte et al. (2017) also found that the NO2
concentration decreased in turn on highways, arterial roads,
and residential streets, which are in good agreement with
our research. The observed O3 concentrations have oppo-
site trends of CO and NO2 with the highest concentration
in residential streets (Table 2). As O3 production in Nan-
jing is in VOC-limited regions, lower NOx could reduce
its titration of O3 and subsequently increase O3 concentra-
tion (Ding et al., 2013; Xie et al., 2016). The O3 concen-
trations are lowest in tunnels, which is associated with the

Figure 7. Spatial distribution and “hotspots” of air pollutant con-
centrations in the research domain (CO, NO2, and O3). Circles
marked with A–Z represent the identified “hotspots”, where the air
pollutant concentrations are at least 50 % higher than the surround-
ing area (300 m radius). © OpenStreetMap contributors 2019. Dis-
tributed under a Creative Commons BY-SA License.
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Table 1. “Hotspots” of air pollution for multi-pollutants identified in Nanjing. “No.” refers to the number of observation points within 300 m
of the hotspots.

ID Specific No. CO, mg m−3 NO2, µgm−3 Description/potential sources

A A1, A2 6535 0.60± 0.82 4.0± 15.9 Nanjing railway station/gasoline vehicle emission
B B1, B2, B3 4177 1.24± 1.74 16.6± 26.1 Exit and entrance of tunnel/gasoline vehicle emission
C C 1002 0.73± 0.39 0.90± 12.5 Subway entrance/gasoline vehicle emission
D D1–D5 4333 0.46± 0.61 6.10± 15.0 Overpass on ring road/vehicle emission
E E1, E2 5354 1.47± 3.04 15.8± 26.8 Crossroads/vehicle emission
F F 1052 0.55± 0.53 13.5± 14.2 Moonlight Plaza/vehicle emission
G G 6160 0.91± 1.31 11.8± 21.0 Maigaoqiao subway station/diesel vehicle emission
H H 6231 0.66± 0.74 15.7± 23.5 Hospital/vehicle emission
I I 2386 0.36± 0.49 5.60± 14.0 Petrochemical enterprises/industrial emissions

weak sunlight in the tunnels (Awang et al., 2015). Further-
more, due to the unfavorable diffusion conditions in the tun-
nels, NO2 concentration is accumulated to a relatively high
level (40.7± 29.7 µgm−3), which titrates O3. The tunnel also
blocks the replenishment of surrounding O3-rich air, result-
ing in a lower O3 concentration than other roads (Kirchstetter
et al., 1996).

3.5 Temporal variation

Figure 8 shows the temporal variation of the three air pol-
lutant concentrations during the observation campaign, with
the hourly mean concentrations over the research domain
shown in Fig. 9 (the corresponding spatial distributions are
shown in Figs. S4–6). The difference of the hourly varia-
tion of the mean sample of different types of roads over a
year is small (Fig. S7), so the data in Fig. 9 are not filtered
in anyway, but for each hour a similar mix of road types
is sampled. We find that the median concentrations of CO
and NO2 in rush hours (07:00–09:00 and 17:00–19:00 LT)
are increased by 26.4 % and 27.3 % compared to non-rush
hours, respectively. The hourly mean concentrations of CO
and NO2 show a double-peak pattern with higher concen-
trations in rush hours (Fig. 9a), reflecting the contribution
of traffic-related emissions (Tan et al., 2009), which we will
elaborate in the next section. The observed O3 concentrations
show a unimodal diurnal pattern with a peak at ∼ 14:00 LT
as a result of photochemical formation. At night, O3 concen-
trations are maintained at a low level due to a lack of solar
radiation and the NOx-titration effect (Xie et al., 2016; Li et
al., 2013). These patterns generally agree with the measure-
ments at stationary monitoring stations (Fig. S3).

No significant differences are observed for the median
concentrations and spatial distribution of three air pollutants
between weekdays and weekends (α = 0.05; Figs. 8b and
S4), even though the morning peaks for CO are slightly
higher during weekdays (Fig. 9b), which is consistent with
An et al. (2015). Wang et al. (2014) found that NOx displays
a weekly cycle in the Beijing–Tianjin–Hebei metropolitan
area, with higher levels on weekdays than weekends. Qin et

al. (2004) observed a significant weekend effect in southern
California, showing that during the morning traffic rush hour,
the concentrations of CO and NO2 at weekends were about
18 % and 37 % lower than on weekdays. The difference be-
tween our study and other cities lies in the difference of fleet
fuel structure, and the different weekly routine of human ac-
tivities and the taxi driving trajectories (Xie et al., 2016).

The median concentrations of CO and NO2 during hol-
idays are comparable to those during non-holidays but are
18.3 % lower for O3 (Fig. 8c). In addition, compared with
the spatial distribution of O3 concentration during holi-
days, we find that the concentrations of O3 in Xinjiekou
and its surrounding areas, where many shopping malls are
located, are higher during non-holidays (Fig. S6). This
may be related to the higher NO2 concentrations in this
area during holidays (24.8± 10.2 µgm−3) than non-holidays
(20.6± 4.82 µgm−3). The hourly concentrations show no
significant difference between holidays and non-holidays
(Fig. 9c). The holidays include the periods of National Day
(1–7 October), the Spring Festival (24–31 February), Qing-
ming Festival (4–6 April), international labor day (1–5 May),
and the Dragon Boat Festival (25–27 June). The “holiday ef-
fect” has been observed extensively for urban and regional air
quality. For example, Xu et al. (2017) found that VOC tracers
were significantly enhanced during the National Day holiday
(from 1–10 October 2014) in the Yangtze River Delta (YRD)
region, indicating that the “holiday effect” had a strong influ-
ence on the distribution and chemical reactivity of VOCs in
the atmosphere. The reason why this effect is not observed
in our study may be related to the relatively smaller sample
size during holidays. The sample size for holidays account
for only 11.3 % of those for the non-holidays.

3.6 Traffic source contribution

Figure 10a and b show the calculated contributions by
traffic-related emission sources to the observed concentra-
tion of CO (referred to as contributions hereinafter). We
find that the mean contribution calculated by the BS method
(42.6± 11.5 %) is generally consistent with that obtained
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Table 2. Multi-pollutant concentrations for six types of roads.

Road types Road numbers Vehicle speed, Traffic congestion CO, NO2, O3,
km/h index∗ mg m−3 µgm−3 µgm−3

Tunnels 9 – – 2.22± 1.18 40.7± 29.7 15.7± 7.85
Highways 168 60–80 2.18 1.10± 0.594 29.2± 8.66 23.3± 9.12
Arterial 443 40–60 1.78 0.958± 0.309 25.0± 6.90 29.7± 7.53
Secondary 419 30–50 1.70 0.855± 0.401 21.8± 8.89 31.9± 10.0
Branch roads 349 20–40 – 0.818± 0.216 20.3± 6.79 32.7± 12.2
Residential 152 < 20 – 0.783± 0.230 19.6± 8.35 35.1± 15.5

∗ The traffic congestion index data are from the Gaud map https://report.amap.com/detail.do?city=320100 (last access: 24 October 2020).

Figure 8. Variation of pollutants concentrations in rush/non-rush hours, weekdays/weekend days, holidays/non-holidays, and three stages of
the COVID-19 pandemic. The dot in each box represents the mean value and the solid line represents the median value. Each box extends
from the 25th to the 75th percentile. The whiskers (error bars) below and above the boxes represents the 10th and 90th percentiles.

from the PD algorithm (43.9± 27.0 %). Their spatial patterns
are also similar (Fig. 10a vs. b). Although our data coverage
is much larger than that of the Apte et al. (2017) study, we
find that the reference method is still applicable in our re-
search area. The contributions in highways, near tunnel en-
trances and exits (e.g., Jiuhuashan and Xuanwuhu tunnel),
at the railway station (Nanjing south station), and on arte-
rial roads (44 %–59 %) calculated using both methods are
higher than on secondary roads and residential streets and
lowest on branch roads (29 %–39 %) (Table 3), which is con-

sistent with the trend in traffic volumes. The patterns for NO2
are quite similar to CO (Fig. S8c and d, Table 1), but the
mean contribution to NO2 calculated using the BS method
(26.3± 14.7 %) is lower than that obtained from the PD al-
gorithm (40.2± 29.9 %). This difference is associated with
the relatively higher uncertainty for NO2 measurements by
sensors (Sect. 2.2), while the results of the PD method seem
unaffected as the sensor bias is canceled out when calculating
the difference between “peak” and “baseline” (Sect. 2.4).

Atmos. Chem. Phys., 21, 1–17, 2021 https://doi.org/10.5194/acp-21-1-2021
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Figure 9. Diurnal cycles of three pollutants concentrations measured in rush/non-rush hours, weekdays/weekend days, holidays/non-
holidays, and different stage of the COVID-19 pandemic by the taxi sensors. Error bars in panel a show the standard deviation of observations.
Gray areas represent the rush hours, and the other represents the non-rush hours (a).

The bottom-up emission inventory indicates that on-road
transportation contributed ∼ 11 % of total CO emissions
from Nanjing in 2012 (Zhao et al., 2015). Considering the
number of cars has increased by ∼ 80 % and the total CO
emissions remained relatively stable (BSNM, 2019), the con-
tribution of traffic sources in recent years is expected to be
∼ 20 %. These values are much lower than what we cal-
culated based on mobile monitoring data because of the
lower spatial resolution of these regional inventories (e.g.,
0.05◦× 0.05◦) (Zheng et al., 2014). They are unable to dis-
tinguish the emission characteristics of air pollutant within
a street level (tens of meters), which leads to their under-
estimation of traffic-related emissions in the road micro-
environment.

3.7 Impact of COVID-19 pandemic

Figures 8d and 9d show the variation of air pollutant con-
centrations at different stages of the COVID-19 pandemic.
The spatial distribution of concentrations and traffic contri-

butions are also depicted in Figs. 11–12 and S9–S10. We
divide the data into three stages: pre-COVID (P1, 1 Oc-
tober 2019–23 January 2020), COVID lockdown (P2, 24–
31 January 2020 and 17–24 February 2020), and post-
COVID (P3, 1 March–30 September 2020). We find the me-
dian concentrations of CO and NO2 were the lowest in P2
(Fig. 9d). For example, the CO and NO2 concentrations de-
creased by 44.9 % and 41.7 % from P1 to P2, respectively
(Figs. 11 and S8). This pattern agrees well with the air quality
station data over eastern China (Huang et al., 2021). We fo-
cus on the traffic sector as it is the most sensitive to lockdown
measures, while other sectors, including power, industrial,
and residential sectors, remain relatively unchanged (Gue-
vara et al., 2021). We find that from P1 to P2, the average traf-
fic source contributions of CO and NO2 using the BS method
decreased by 59.9 % and 51.8 %, respectively (Figs. 12 and
S9). This is consistent with the transportation index data,
which shows a 70 % reduction in eastern Chinese cities dur-
ing lockdown (Huang et al., 2021).
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Figure 10. Contributions from traffic-related emissions calculated using the stationary data method (a) and peak detection algorithm (b) for
CO. © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

Table 3. Contribution of traffic emissions to CO and NO2 in different roads using the two methods.

Road types Traffic emissions – CO, % Traffic emissions – NO2, %

BS PD BS PD

Highways 48.3± 10.4 51.0± 20.4 32.5± 14.5 41.4± 22.5
Arterial 44.1± 9.23 59.0± 19.4 26.8± 10.6 43.6± 23.3
Secondary 40.2± 11.7 47.6± 23.9 22.8± 13.2 35.2± 25.1
Residential 39.4± 14.1 38.9± 26.1 20.3± 16.3 28.6± 25.0
Branch roads 39.2± 12.2 29.7± 23.9 21.5± 18.1 25.5± 24.4

The observed CO and NO2 concentrations recovered to a
level similar to P1 during P3. The traffic-related source con-
tributions were increased by 120 % and 131 % from P2 to P3
for CO and NO2 (Figs. 11 and S9). Due to the limited data
size and spatial coverage (only on some arterial roads and
highways) during P2, the calculated contribution of traffic
emissions to air pollutants may be not directly comparable
to those shown in Fig. 9. But the changes in the contribu-
tion match well with the changes in traffic volume and hu-
man activities (Bao and Zhang, 2020). Our results also agree
with top-down emission estimates from remote sensing data
(Zhang et al., 2020), which showed the total NO2 emissions
decreased by 31 %–44 % from P1 to P2 but increased 67 %–
85 % from P2 to P3.

The observed ozone concentrations show a different trend
from other pollutants in the three stages. We find a pattern
of P1<P2<P3 for O3 median concentrations (Fig. 8d). The
ozone concentration increased by 35.7 % from P1 to P2, and
48.7 % from P2 to P3 (Fig. S9). While the contribution of
traffic emissions to ozone first decreased by 32.5 % from P1
to P2 and then increased by 39.3 % in P2 to P3 (Fig. S10).
This is firstly associated with less titration of NOx during P2
as discussed earlier. In addition, the increased temperature

and solar insolation in P2 and P3 also favor the photochem-
ical formation of O3 compared to P1 (Xie et al., 2016; Fu et
al., 2015; Reddy et al., 2010).

4 Conclusions

Accurate assessment of human exposure to urban air pol-
lution requires a detailed understanding of the spatial and
temporal patterns of air pollutant concentrations. Combin-
ing mobile monitoring with GIS technology, we obtained
high-resolution (50 m× 50 m) spatial distribution maps of
three air pollutants in the main urban area of Nanjing, which
demonstrates well the spatial heterogeneity of pollutants at
the micro-scales. We find that higher spatial resolution is use-
ful to identify hotspots that are mainly affected by three types
of air pollution emissions sources, namely, traffic, industrial,
and cooking fumes. It also provides hints for air quality man-
agement and emission source control.

We calculate the contribution of traffic-related emissions
to air pollutants in different grid points by combining mobile
observation and station observation data. Compared with the
peak detection method, the station data method is more rea-
sonable for secondary pollutants such as O3, while the former
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Figure 11. Changes in observed CO concentration in the three stages of the COVID-19 pandemic. P1, P2, and P3 are for pre-COVID,
COVID-lockdown, and post-COVID periods, respectively. © OpenStreetMap contributors 2019. Distributed under a Creative Commons
BY-SA License.

Figure 12. Changes in the contributions of traffic-related sources to CO in the three stages of the COVID-19 pandemic calculated using the BS
method. P1, P2, and P3 are for pre-COVID, COVID-lockdown, and post-COVID periods, respectively. © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.

is less affected by sensor bias. There are also some differ-
ences in the contribution of traffic emissions to air pollutants
in different types of roads. Due to the impact of the COVID-
19 pandemic, the mean concentrations of CO and NO2 de-
creased by 44.9 % and 47.1 %, respectively, during the lock-
down in Nanjing, and the contribution of traffic-related emis-
sions also decreased by 59.9 % and 52.6 %. In contrast, the
concentration of O3 increased by 35.7 %, respectively. After
reopening, CO and NO2 concentrations rebounded by 61.6 %
and 48.2 %, and the contribution of traffic emissions both in-
creased by over 100 %, indicating the great impact of traffic
emissions on urban air pollution.
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