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Abstract
Synergies and trade-offs exist between climate mitigation actions and target indicators of the
Sustainable Development Goals (SDGs). Some studies have assessed such relationships, but the
degree of such interaction remains poorly understood. Here, we show the SDG implications
associated with CO2 emissions reductions. We developed ‘marginal SDG-emissions-reduction
values (MSVs)’, which represent the marginal impacts on SDG indicators caused by a unit CO2

emissions reduction. This metric is applicable to national assessments and was applied to Asia. We
found clear relationships between CO2 emissions reduction rates and many SDG targets. For
instance, 1% reduction of CO2 can avoid 0.57% of air pollution-related premature deaths (SDG3),
whereas the mean species richness (SDG15) is decreased by 0.026% with the same reduction (not
including climate change impacts). Our findings are useful for assessing the SDG implications
associated with CO2 emissions reduction targets, which will help inform national climate policies.

1. Introduction

The Paris Agreement [1] includes the following
long-term temperature goal for international climate
policy: ‘holding the increase in the global average
temperature to well below 2 ◦C above pre-industrial
levels and pursuing efforts to limit the temperat-
ure increase to 1.5 ◦C above pre-industrial levels’.
The climate change mitigation strategy of reducing
greenhouse gas (GHG) emissions may have various
effects on multiple sectors. These effects are crit-
ically important to the implementation of climate
change mitigation actions and other societal goals.
Some studies have addressed the side effects of cli-
mate changemitigation actions on Sustainable Devel-
opment Goals (SDGs) [2–5] and recent Intergovern-
mental Panel on Climate Change (IPCC) reports on

reaching 1.5 ◦C warming summarise the relevant lit-
erature to date [6]. This research has revealed both
trade-offs and synergies between sustainable develop-
ment and climate change mitigation. Some research-
ers have proposed scenarios implementing additional
societal changes to the so-called baseline scenario
(e.g. shifting to less meat consumption and lifestyle
changes that reduce energy demand) to attain multi-
dimensional benefits from climate change mitiga-
tion. However, despite the existing literature on these
topics, little is currently known about the relation-
ships between climate change mitigation strategies
and various sustainable development goals. Previ-
ous studies have described specific scenario out-
comes that are limited to 1.5 ◦C or 2 ◦C temperature
increase, viewed at the global scale. Further informa-
tion, such as the responses of SDG target indicators to
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Table 1. Indicators associated with SDGs and the primary models used to quantify each indicator.

SDGs Field Indicators (SDG targets) Unit Model

Population at risk of hunger (2.1) Person AIM/Hub+Hunger toolSDG2 Hunger
Agricultural price (2.c) No unit AIM/Hub

SDG3 Health Air pollution mortality (3.9.1) Person AIM/Hub+ GEOS-
Chem+Health assessment
tool

SDG6 Water Population under water scarcity
(6.4.2)

Person AIM/Hub+Water assess-
ment tool

Share of renewable energy
(in primary energy) (7.2.1)

Ratio AIM/Hub
SDG7 Energy

Energy intensity (7.3.1) GJ/$ AIM/Hub
SDG8 Labour GDP per capita (8.1.1)

Unemployment rate (8.5.2)
2005US$/cap
%

AIM/Hub

SDG9 Economy Secondary industry share (9.2.1) Ratio AIM/Hub AIM/Hub
SDG12 Consumption Food waste (12.3.1) Mt/year AIM/Hub
SDG15 Life on land Forest area (15.1.1)

Mean species richness
(15.5: Biodiversity index)

Area
Species
per grid
cell

AIM/Hub
AIM/Hub+ AIM/PLUM+
AIM/Biodiversity

CO2 emissions reductions, would be useful for fram-
ing sustainable development policies at the national
scale.

Here, we show the SDG implications associ-
ated with CO2 emissions reduction. To this end, we
developedmarginal SDG-emissions-reduction values
(MSVs), representing the marginal impact on SDG
indicators caused by a unit of CO2 emission reduc-
tion, which is generally applicable to national assess-
ments. We determined these values for Asia as an
example application in this study. Asia is predicted to
be one of the most important regions over the next
few decades in terms of population size, economy,
and GHG emissions [7]. For example, emissions have
continuously increased in the recent past, growing
by 330% over the last four decades and reaching 19
GtCO2eq yr−1, approximately equivalent to 40% of
global emissions, in 2010 [8]. Future scenario analysis
was carried out and the scenario data were then pro-
cessed to develop MSVs for five scenarios with vary-
ing degrees of climate mitigation stringency. One is
referred to as the baseline scenario, which does not
include climate change mitigation policy represented
by carbon pricing. The other scenarios reduce GHG
emissions by varying the stringency of mitigation
actions, with global mean temperature changes at the
end of the century of 1.5 ◦C, well below 2 ◦C, 2 ◦C
and 2.5 ◦C compared with preindustrial levels (here-
after referred to as the 1.5 C, WB2 C, 2 C, and 2.5 C
scenarios, respectively)[9]. These scenarios allow the
implications of the Paris Agreement long-term goals
to be explored. We used the AIM (Asia-Pacific Integ-
rated Model) modelling framework coupled with
other modelling tools to quantify multiple indicat-
ors associated with the SDGs listed in table 1, which
is based on the SDG target list and current model-
ling capabilities (for more details, see the Methods,

supplementary note1 and figure S1 (available online
at stacks.iop.org/ERL/15/085004/mmedia)).

2. Methods

As noted in the above, we used the AIM (Asia-Pacific
Integrated Model) modelling framework coupled
with other modelling tools for scenario quantifica-
tion, allowing assessment of the effects of climate
change mitigation as well as other societal and envir-
onmental changes on the attainment of SDGs. To
quantify the indices, we incorporated an economic
(general equilibrium; AIM/Hub) [10, 11] model,
gridded land use allocation model [12], biodiversity
model [13], water scarcity assessment tool, emis-
sions downscaling tool [11], hunger estimation tool
[14], simplified climate model [15], air transport
& chemistry model (GEOS-Chem) [16] and health
assessment tool [16]. The details of each model are
provided in the Supporting Information and here we
briefly summarize each model as table 2 and what
information is exchanged between models as table 3.

In all climate changemitigation scenarios, carbon
pricing starts from the year 2020 with a global uni-
versal carbon price. As in previous modelling exer-
cises, we cap the carbon price on the agricultural
sector at $100/tCO2 so that most emissions abate-
ment can occur but excessive negative side effects
can be avoided [14]. The global mean temperature
outcomes from model assessment are shown in fig-
ure S12, which shows temperature increases in 2100
compared with the pre-industrial level of around 1.5,
1.7, 2.0 and 2.5 ◦C at the end of the century, while
the baseline scenario increases by over 3.5 ◦C. SSP2
(Shared Socioeconomic Pathways [17]) was utilised
for the background socioeconomic assumptions. For
the near-term, we utilised the most recent energy
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Table 2.Model summary.

Model name General model/tool
type

Spatial resolution Main outputs Main inputs

AIM/BIO Statistical habitat
mdoel

Global 0.5× 0.5 Potential habitat of
each species

Land use and climate
information

AIM/Hub Economic model Global 17 regions Economy, energy,
land-use, emissions,
food, and water
demand

GDP, population and
future technological
changes

AIM/PLUM Land use allication
model

Global 0.5× 0.5 Land-use category
and biomass supply

Aggregated land-use,
and land-use related
economic indicators

GEOS-Chem Atmospheric Chem-
inal Transport model

Global 2.0× 2.5 Air pollutant concen-
trations

Meteological inform-
ation and emissions

Health tool Simple process model Global 0.5× 0.5 Air pollution mortal-
ity

Air pollutant concen-
trations

Hunger tool Simple process model Global 106 countries
and regions

Food distribution and
population at risk of
hunger

Food consumption
and GDP/cap

Water assessment tool Simple comparison Global 0.5× 0.5 Population uder
water scarcity

Water demand and
climate information

Table 3.Main exchanged information among models.

Provider Receiver Information

AIM/Hub Water
assessment
tool

Regionally aggregated
water demand by sectors

AIM/Hub GEOS-
Chem

Spatially downscaled air
pollutant emissions

GEOS-
Chem

Health
tool

Spatially explicit PM2.5
and Ozone concentrations

AIM/Hub AIM/PLUM Regionally aggregated land
use Prices of carbon, agri-
cultural commodities,
labor and capital

AIM/PLUM AIM/BIO Spatially explicit land use
AIM/Hub Hunger

tool
Regionally aggregated food
consumption

information available and, consequently, the model
results mostly follow the IEA Energy Balance Table
until 2015. For the period 2020–2030, the climate
policy assumption is stronger than the NDC as a res-
ult of global emissions constraints.

This study excludes climate change impact (e.g.
on agricultural yield, water resources, or biodiversity)
to isolate the effects of climate change mitiga-
tion, although climate change may have multi-sector
impacts, which will be explored in future research.
Further details of each model are shown in the sup-
plementary note 1.

3. Results

3.1. Asian mitigation pathways
We first explore the main features of the climate
change mitigation scenarios. Aligning the emissions
pathways to stabilise climate well below 2 ◦C, the CO2

emissions in Asia become, in 2050, about half of the

current level, reaching zero around 2080 and negative
values in 2100. In contrast, the baseline scenario pro-
jects continuous increases until the 2030 s, followed
by a stagnant period (figure 1(a)). Attaining 1.5 ◦C
increase and then stabilisation requires a rapid reduc-
tion and strongly negative emissions in the former
and latter halves of this century, respectively. The car-
bon price will reach about $800/tCO2 in 2100 in the
WB2 C scenario (figure 1(b)), while the other scen-
arios are widely spread. A small kink around 2035 in
the WB2 C scenario is caused by the emissions tra-
jectory generated by the optimisation model, which
is based on the Dynamic IntegratedModel of Climate
and the Economy (DICE; figure 1(a)). The primary
energy supply of the baseline scenario increases from
150 EJ in 2010 to 350 EJ in 2100, whereas the increase
is constrained in the mitigation scenarios, with about
230 EJ in 2100 under WB2 C. The energy mix shows
thatmore than half comes from renewable energy and
the remainder from fossil fuels using carbon capture
and storage (CCS) in the latter half of the century
(figure 1(c)). Overall, land use is similar between the
baseline and mitigation scenarios, whereas the forest
area increases from530Mha to 730Mha in theWB2C
scenario due to afforestation (figure 1(d)). Gener-
ally, as the emissions reduction becomes stronger, the
degree of change in carbon price, energy, and land
use becomes more severe. The global pattern is rather
similar to that in Asia, although the absolute scale of
the emissions, energy supply and land use areas differ
(figure S2).

3.2. SDG implications of the Asian climate change
mitigation
Figure 2 illustrates individual SDG indicators that
indicate the multi-sectoral implications of climate
change mitigation in Asia. The SDG impacts are
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Figure 1.Mitigation pathways and general features of scenarios in Asia. The panels show results for (a) CO2 emissions, (b) carbon
price, (c) primary energy supply, and (d) land use.

closely linked to the stringency of climate change
mitigation (figure 1). Six indicators, including num-
ber of deaths caused by air pollution (SDG3), air
pollution mortality (number of people under water
stress) (SDG6), share of renewable energy (in primary
energy) and energy intensity (SDG7), unemploy-
ment rate (SDG8), food waste (SDG12), and forest
area (SDG15) show co-beneficial relationships with
climate change mitigation. The most remarkable
sector is health, which shows a 30% reduction in
air pollution-related mortality (SDG3) due to cli-
mate change mitigation. The share of renewable
energy (SDG7) also shows significant improvement.
Three indicators show trade-off relationships with
climate change mitigation: population at risk of hun-
ger (SDG2), secondary industry share (measured
by manufacturing value added as a proportion of

GDP; SDG9), and biodiversity index (SDG15). Risk
of hunger (SDG2) has been shown in previous stud-
ies (e.g. Fujimori et al and Hasegawa et al [14, 18–20]
and we confirmed a similar trend. GDP per capita
(SDG8) shows small adverse effects that are limited
and may be negligible considering other drivers such
as socioeconomic assumptions or climate change
impact. We discuss more details of these individual
indicators below by mainly contrasting baseline and
WB2 C scenarios.

Population at risk of hunger continuously
decreases over this century from, 500 million in 2010
to 7.4 million in 2100 in the baseline scenario, mainly
driven by steady income growth. Climate change
mitigation based on a simple carbon tax policy could
have negative impacts on the risk of hunger, which is
a consequence of increased food price (figure 2(b)).

4
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Figure 2.Multi-dimensional SDG impacts of climate change mitigation in Asia. Purple line represent the baseline and red, blue,
green and orange do mitigation scenarios (2.5 C, 2 C, WB2, and 1.5 C), respectively.

This can be seen in most mitigation scenarios. These
adverse side effects can be avoided through supple-
mentary policies designed to eradicate them using
relatively little in the way of financial resources or
distribution changes [14, 21].

Mortality related to ambient air pollution, asso-
ciated with air pollutants, would increase in the short
term, increasing from 3.3 to 4.2 million between 2010
and 2030, but decreases in the long term even in the
baseline scenario (figure 2(c)). Recent studies [22]
show that sulphur emissions in China have decreased,
which is not fully reflected in this study and, thus,
the short-term trend may differ if we implement the
latest data, but the general mid- to long-term trends
would not be. The climate change mitigation co-
benefits are greatest in this area, in accordance with
previous studies in Asia [16] and worldwide [23]. For
example, around 1.5 million premature deaths could
be avoided annually bymid-century under theWB2C
scenario.

Population under water scarcity shows a mod-
est increase in the first part of this century and then
declines, showing almost identical trends in both
scenarios (figure 2(d)). In the mitigation scenario,
water demand may decrease or increase due to the
phase out of fossil fuel fired power plants (reducing
cooling water demand) [24] and large-scale expan-
sion of energy crop production [25], and the final
outcome differs little from the baseline, as shown

in figure 2(d). The agricultural demand for food
decreases slightly as a consequence of carbon pricing
on non-CO2 emissions and associated GDP losses
[18], which contribute to decreases the water demand
in the irrigation.

Energy is the sector most closely linked with cli-
mate change mitigation, and it shows strong syn-
ergy with the renewable share of primary energy sup-
ply. This share begins at 20% in 2010 and reaches
60% in 2100 in the WB2 C scenario, while it remains
stable during this century in the baseline scenario
(figure 2(e)). Energy intensity decreases continu-
ously throughout this century in all scenarios, mainly
due to the continuous improvement of energy-saving
technology and industrial structural changes wherein
energy usage is gradually shifting from secondary to
tertiary industries (figure 2(i)).

Among economic indicators, we found that the
employment rate is almost constant over this century
in both scenarios, with the baseline scenario trend
dependingmostly on the prescribed assumptions and
showing little response to climate mitigation because
the wage rate is hardly affected by the mitigation pro-
cess (carbon price implementation) (figure 2(g)). The
regionally aggregated baseline reflects the regional
share and initial conditions. The employment would
be benefit from the recycling the tax to the labour
market under the modest carbon prices because we
assume that the carbon tax revenue is recycled to the

5
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Table 4. Statistics of the regression for the MSVs for Asia.

Estimates Standard error t-value Pr(>|t|)

Population at risk of hunger 0.95 0.06 16.57 0.00
Agricultural price index 0.27 0.01 23.14 0.00
Air pollution mortality −0.58 0.02 −31.00 0.00
Population at water scarcity −0.01 0.00 −2.72 0.01
Energy intensity −0.24 0.01 −30.06 0.00
Share of renewable energy 2.58 0.09 29.46 0.00
Unemployment rate −0.02 0.00 −32.25 0.00
GDP per capita −0.03 0.00 −20.53 0.00
Secondary industry share 0.05 0.00 12.35 0.00
Food waste 0.00 0.01 −0.24 0.81
Forest Area 0.34 0.02 19.19 0.00
Mean species richness −0.03 0.00 −11.54 0.00

Figure 3.Marginal SDG emissions reduction curves for Asia. The x-axis represents CO2 emissions reduction rates in the
mitigation scenario compared to the baseline scenario and the y-axis shows the percentage changes of individual SDGs in the
mitigation scenario compared with the baseline scenario. The green, red and yellow traffic signals indicate improvement,
worsening or mixed changes in SDGs when climate change mitigation is implemented. The trends are linear fits. Areas of over
100% CO2 emissions reduction are shaded. Note that biodiversity index (panel i) shows only continent-scale regions.

labor market as described in supplementary inform-
ation, but further expensive carbon tax may adversely
affect. GDP in 2100 reaches about 8-fold that in 2010
in the baseline scenario. The mitigation scenarios
projected are similar to the baseline, showing 3% loss
in the year 2100 under WB2 C and accumulated net
present value of GDP loss over this century of 0.3%
per year.

Food waste increases in the first part of cen-
tury and then declines (figure 2(j)). As we did not
assume that any additional policies are implemented

to reduce food waste explicitly, the trend is sim-
ilar to that of total agricultural demand under the
baseline scenario. Themitigation scenarios show sim-
ilar trends to the baseline scenario, crossing in the
latter half of the century. This crossover is driven
primarily by increased production of waste from first-
generation biofuels produced from sources such as
sugarcane in the mitigation scenario.

Forest area benefits from climate change mitiga-
tion through the carbon pricing mechanism due to
the large carbon stock in such land (below and above

6
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Figure 4. Regression results validating the robustness of the estimated marginal SDG emissions reduction curves. X-axis indicates
the tests used; ‘Asia’: original data, ‘Asia excluding >80%’: excluding data for CO2 reductions over 80%, ‘Global’: global data,
‘Global excluding >80%’: global data excluding CO2 reductions over 80%, and the others are excluding individual Asian regions.
Dots represent regression slopes of CO2 emission reduction rates and error bars indicate standard errors.

the ground), leading to enhanced afforestation and
reforestation of around 200 Mha during this century
in the WB2 C scenario, whereas the baseline scen-
ario maintains nearly the same forest area as the base
year. The biodiversity index worsens slightly in both
scenarios due to land use changes. The mitigation
scenario may show an adverse side effect of mitiga-
tion actions due to land-based emissions reductions
(e.g. bioenergy crop expansion), but these impacts
are small (4% and 6% in the baseline and mitigation
scenarios). Note that we do not consider the impact
of climate change (temperature and precipitation
effects), but previous studies have shown that much
stronger negative impacts may occur in the baseline
scenario [26]. Details of the scenarios for individual
Asian regions and worldwide corresponding to fig-
ure 2 are shown in figures S3–S8, and supplementary
note 2.

Regarding the differences between 1.5 C and
WB2 C scenarios, there are two main features. First,
the responses to the mitigation scenarios seen in
WB2 C is strengthen in 1.5 C scenario. Second, the
gaps are largest mid of the century while get small at
the end of century. This can basically be explained by
the emissions gap (figure 1).

3.3. Marginal SDG emissions reduction values
Figure 3 illustrates the relationship between CO2

emissions reduction rates and changes in SDG
indicators compared with the baseline scenario. We
fitted the plots through simple linear regression with
a slope of the MSVs. Then, we added information
about synergies, trade-offs, and unclear relationships,
indicated on the traffic light in green, red and yellow,
respectively. An unclear relationship here means that
we could not obtain a statistically significant slope
at the 5% confidence level. The relevant statistics are
shown in table 4. As shown in the Asian total time-
series panel, similar tendencies are observed in most
regional results. For example, risk of hunger con-
sistently worsened, while premature death associated
with air pollution improved across all regions. This
result indicates that Asian regions face similar chal-
lenges and experience similar co-benefits.

Co-benefits were identified for air quality, renew-
able energy share, energy intensity, unemployment
and forest area, which exhibit 0.58%, 0.23%, 2.6%,
0.02%, and 0.34% improvements with 1%CO2 emis-
sion reduction compared with the baseline scen-
ario, respectively. At the same time, risk of hun-
ger, agricultural price, GDP, and biodiversity show

7
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adverse effects of 0.94%, 0.26%, 0.034%, and 0.026%,
respectively. The food waste slope was statistically
insignificant and, thus, we could not determine its
relationship. One the one hand, the food consump-
tion level would be slightly decreased under the mit-
igation while the first generation biomass expansion
associated with higher carbon price would increase
the production side waste.

Although most indicators were statistically signi-
ficant, some countries show strong unique reactions
to climate change mitigation as the CO2 reduction
deepens beyond an 80% reduction. For example, the
risk of hunger (figure 3(a)) in India exhibits a remark-
ably strong response in the area of high CO2 reduc-
tion, mainly due to increases in land rent. Food waste
in Southeast Asia and the secondary industry share
in the rest of Asia are other examples. The former is
induced by first-generation biofuel production and
the latter is due to energy crop expansion, which leads
to an increase in primary industry share. These find-
ings imply that the MSVs are currently applicable
for moderate reductions (e.g. less than 80%). Over
80% reduction would cause non-linear responses. An
80% reduction would represent a strong reduction
target in current climate policy, based on nationally
determined contributions (NDCs) [27], but attaining
the Paris Agreement goal of well below 2 ◦C requires
deeper reductions in emissions, at least in the second
half of this century. Notably, the Asia and global totals
show very similar trends, indicating that the multi-
dimensional sustainable development implications of
climate change mitigation in Asia are similar to those
at the global scale in terms of relative changes to the
baseline scenario.

4. Discussion and conclusion

We explored the Asian SDG implications of cli-
mate change mitigation actions and developed mar-
ginal SDG emissions reduction values (MSVs), which
provide multiple benefits. First, they can be used
for any country that would like to predict the SDG
implications of climate change mitigation actions
without complex computer simulation models, such
as integrated assessment models. For example, if a
country is considering a 50% CO2 emissions reduc-
tion target as a post-Paris Agreement national target,
theymay be able to obtain first-order approximations
of the SDG implications using themethod introduced
in this study. Second, the research modelling com-
munity would also benefit greatly from this inform-
ation. Few models can represent the fine details and
wide range of sectoral SDG impacts, and the inform-
ation in this study will be useful to those modelling
teams.

The robustness of the results must be investig-
ated carefully and, therefore, four types of regression
were carried out. First, we tested the regressions by
excluding data points representing more than 80%

reductions of CO2 emissions, as figure 3 shows a large
spread in those data. Second, global model results (17
regions) were regressed to determine whether the res-
ults are applicable only to Asia or worldwide. Third,
the global model results were used while excluding
greater than 80% reductions of CO2 emissions, as
described above for the Asian dataset. Fourth, we
excluded each Asian regional result and regressed the
results with that region to ensure that the overall
results are unaffected by single-region results. The
derived slopes were similar to those of the full dataset
regression (figure 4). One exceptional case is the full
global dataset, which showsmarkedly different values
for some indicators (air pollution, energy intensity,
and secondary industry share). This result appears to
be driven by extraordinary behaviour in some regions
(e.g. Brazil) with over 150% reductions (i.e. large neg-
ative emissions; see figure S9). Thus, we can conclude
that our results are applicable for not drastic CO2

emissions reductions of less than 80%. Moreover, if
this information is applied for national policy assess-
ments, dramatic changes could occur in some coun-
tries with large reductions, as illustrated in figure 3.
One more note is that we applied worldwide uniform
carbon prices for each scenario, but actually this may
not be realistic. If we assume individual nation’s emis-
sions reduction levels by considering current capabil-
ity, responsibility and equity, there would be much
more regional variation and the regressed MSV para-
meters can change.

In this study, we only employed linear regres-
sions forMSV fitting, but non-linear relationships are
possible. In particular, at greater emissions reduction
rates, the non-linearity could be strong. Application
of more complicated regression techniques could res-
ult in better fitting; however, such approach would
reduce the simplicity and ease of use and, therefore,
we employed linear regressions in this paper. This
study’s primary focus was on introducing the concept
of MSVs, and further elaboration, such as the use
of other regression methods, would be a logical next
step. Incorporating more samples is also expected
to improve the reliability of estimates, as is adding
more integrated assessment model results. Consider-
ing fixed effects of regions may also be another pos-
sibility but we have carried out the regression with
the region fixed effects which shows small differences
from the original results and the qualitatively results
are hold (table S1).

We defined the ratio of SDG indicator changes in
the mitigation scenarios to those in the baseline scen-
ario as MSVs. Ratios relative to the base year may
also prove useful. However, we tested that relation-
ship and obtained poor results with some exceptions
such like air pollution (see figure S10 for parameter
fitting and figure S11 and supplementary note 3 for
comparison with the predicted ratios in Asian regions
in 2075), partly because changes relative to the base
year include the effects of socioeconomic changes that
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occur regardless of the stringency of climate policies,
making CO2 reduction rates poor explanatory vari-
ables.

We confirmed that numerous benefits arise from
climate change mitigation, enabling achievement of
some SDGs. Meanwhile, we confirmed that there are
also trade-offs between climate change mitigation
and SDGs, and avoiding adverse side effects still must
be addressed. Some countermeasures have already
been proposed in previous studies; for example, food
aid and exemption from carbon pricing for the agri-
cultural sector would help avoid the trade-off with
SDG2 [14].

Interpreting this study in comparison with pre-
vious works, we consider two remarkable articles,
namely, Bertram et al [2] and van Vurren et al
[3], both of which explored long-term global multi-
dimensional sustainability implications. To these
bases, we have added several indicators that have
not been quantified to date (e.g. mortality associ-
ated with air pollution, population at risk of water
scarcity and unemployment). The present study adds
to the field in this regard, as well as by focusing on
Asian regional implications. Meanwhile, we found
similarities that validated the results of those stud-
ies. For example, Bertram et al [2] implemented mul-
tiple societal changes along with simple carbon pri-
cing, which is typically used in climate change mitig-
ation studies, and the food price increased due to cli-
mate changemitigation without exemption from car-
bon pricing for agricultural GHG emissions.

Several caveats are needed for interpretation of
this study. Firstly, the indicators employed in this
study are limited within the broad context of sustain-
able development. We mapped the assessed indicat-
ors with SDG targets, but they do not fully repres-
ent each SDG target. Thus, the multi-faceted implic-
ations discussed in this study represent just one illus-
trative example of such analysis. At the same time,
assessment of a full, complete set of indicators is not
a realistic approach for integrated assessment mod-
elling and, thus, a compromise is needed. Secondly,
as noted above, improvement of land-related mod-
elling is in progress. Thus, careful consideration is
needed when interpreting the results of land-related
factors and improvement of the representations of
land use and associated factors is desirable. Although
some studies have shown that scenarios with certain
societal changes have relatively low reliance on negat-
ive emissions technologies [3, 28], once zero or neg-
ative CO2 emissions are required, it is impossible to
avoid changing land use unless the direct air capture
or its equivalent technologies are available. In contrast
to previous studies, we did not explicitly consider
additional ecosystem protection and food security
policies that may be implemented in climate change
mitigation strategies.When implementing large-scale
dedicated bioenergy crop production, it is important
to consider protecting the land ecosystem to avoid

the problems seen with deforestation for commercial
usage. In Asia, Indonesian palm oil plantations are
a well-known example, showing that market-driven
changes without special consideration for environ-
mental protection can easily degrade the ecosystem.
Thirdly, and related to the first and second points,
we did not consider other land-related impacts that
may be affected by climate change mitigation actions,
such as nitrogen pollution and water quality changes,
which are often cited as global concerns [29]. If bioen-
ergy crops rely on intensive nitrogen fertilisation, the
situation could worsen. Fourthly, we did not include
climate change effects (e.g. agricultural yield and
biodiversity) in this analysis and accounting for them
would further improve the results.

Finally, we explore the future research potential
based on this study. First, we limited the number of
scenarios to obtain better focus, as there are multiple
ways to expand the scenario frameworks. Addition
of shared socioeconomic pathway (SSP) dimensions
would be the first change to implement. More climate
scenarios under various climate policies would also be
useful. In the long term such differencesmay not be of
concern, but for short-term scenarios based on NDC,
it may be useful. Second, expanding the SDG-related
indicators would be beneficial (e.g. SDG1). Third,
as noted above, land use issues must be addressed
under zero or negative emissions conditions, as land
use would be strongly affected by climate change mit-
igation and the current aggregated and naïve mod-
els must be improved. Fourth, we assessed the SDG
indicators from the perspective of climate changemit-
igation, and the reverse analysis, targeting each SDG
objective and then interpreting the climate change
mitigation implications, is also highly relevant and
should be explored in future research.
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