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Abstract. Urban air pollution has tremendous spatial vari-
ability at scales ranging from kilometers to meters due to un-
evenly distributed emission sources, complex flow patterns,
and photochemical reactions. However, high-resolution air
quality information is not available through traditional ap-
proaches such as ground-based measurements and regional
air quality models (with typical resolution > 1 km). Here
we develop a 10 m resolution air quality model for traffic-
related CO pollution based on the Parallelized Large-Eddy
Simulation Model (PALM). The model performance is eval-
uated with measurements obtained from sensors deployed
on a taxi platform, which collects data with a comparable
spatial resolution to our model. The very high resolution of
the model reveals a detailed geographical dispersion pattern
of air pollution in and out of the road network. The model
results (0.92± 0.40 mg m−3) agree well with the measure-
ments (0.90± 0.58 mg m−3, n= 114502). The model has
similar spatial patterns to those of the measurements, and the
r2 value of a linear regression between model and measure-
ment data is 0.50± 0.07 during non-rush hours with middle
and low wind speeds. A non-linear relationship is found be-
tween average modeled concentrations and wind speed with
higher concentrations under calm wind speeds. The modeled
concentrations are also 20 %–30 % higher in streets that align
with the wind direction within ∼ 20◦. We find that streets

with higher buildings downwind have lower modeled con-
centrations at the pedestrian level, and similar effects are
found for the variability in building heights (including gaps
between buildings). The modeled concentrations also decay
fast in the first ∼ 50 m from the nearest highway and arte-
rial road but change slower further away. This study demon-
strates the potential of large-eddy simulation in urban air
quality modeling, which is a vigorous part of the smart city
system and could inform urban planning and air quality man-
agement.

1 Introduction

Urban air pollution is one of the greatest threats for human
health in the modern world as 55 % of the global popula-
tion are living in cities, but more than 80 % of them are
exposed to air quality levels that exceed the World Health
Organization limits (The World Bank, 2020; WHO, 2016).
Traffic-related emissions are often the major source for
urban regions of many air pollutants (e.g., CO, nitrogen
oxides, and volatile organic compounds) (Liu and He,
2012). Patterns of traffic-related air pollution in the urban
environment has substantial temporal and spatial variability
due to unevenly distributed emission sources, complex flow
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patterns, and physicochemical transformations (Apte et
al., 2017). Compounded with the complex and dynamic
commuting behavior and crowd dynamics of urban resi-
dents, high-resolution air quality information is thus needed
for smart-city designers and air pollution mitigation in a
“big-data” era (Gao et al., 2019). However, such informa-
tion is generally not available as accurate ground-based
monitoring of air quality at a high spatial resolution is too
expensive due to the large number of required instruments
even with relatively low-cost sensors (Kumar et al., 2015).
The typical monitoring site numbers are ∼ 10 even for a
megacity with > 10 million population and > 1000 km2

area, and these sites are often located far away from road
networks. For example, there are nine national air quality
stations in Nanjing (http://hbj.nanjing.gov.cn/, last access:
16 November 2020) and eight air quality monitors in the city
of New York (https://www.epa.gov/outdoor-air-quality-data/
interactive-map-air-quality-monitors, last access:
16 November 2020). Alternative approaches such as
satellite remote sensing and regional chemical transport
models are also spatially coarse (∼ 1–10 km resolution) (van
Donkelaar et al., 2010; Zhang et al., 2009). Here we present a
very high-resolution air quality model for traffic-related CO
air pollution in urban regions using large-eddy simulation
(LES).

The impact of traffic emission on urban air quality is asso-
ciated with a myriad of factors such as emission strength and
air pollutant dispersion (Abou-Senna et al., 2013). For ex-
ample, background meteorological factors such as the wind
speed and vertical temperature stratification are known to in-
fluence the pollutant dispersion, and the most severe air pol-
lution is associated with calm weather conditions with tem-
perature inversions (Wolf and Esau, 2014). Trees are found to
increase turbulence and reduce ambient concentrations asso-
ciated with traffic emissions at pedestrian height (Jeanjean
et al., 2015), while trees are also associated with reduced
street ventilation, which leads to higher pollutant concentra-
tions (Vos et al., 2013). The geometry of the street canyon
is an important factor: higher buildings and narrower streets
cause heavier pollution inside the canyon (Fu et al., 2017).
The symmetric level of building heights also influences wind
and turbulent diffusion and affects pedestrian-level concen-
trations (Fu et al., 2017). Preferable pathways created by the
configuration of buildings and streets facilitate longer disper-
sion of pollutants and influence regions farther away from
roads (Wolf et al., 2020).

Numerical models have been applied to model traffic-
related air pollution in urban regions. Gaussian plume and
puff models have a long history of being widely used for
such purposes, e.g., regulatory models such as AERMOD
and CALPUFF (US EPA, 2020). These models use statistical
methods to parameterize turbulent diffusion based on back-
ground meteorological conditions and diagnostic building
geometry characteristics, and reasonably accurate results can
be achieved with representative meteorological input (Rood,

2014). Dispersion models are also nested with regional Eule-
rian models such as CMAQ and CAMx to bridge the coarse
resolution (∼ km) to street level (∼ 10 m) (e.g., the ADMS-
Urban model; Biggart et al., 2020; Righi et al., 2009). One
drawback of these statistical models is the lack of explicit
representation of the air flow and turbulent eddies around
landscapes and buildings (Sun et al., 2016). The predicting
power of these models decreases farther away from sources
as they cannot describe the turbulent transport of pollutants
by larger eddies which could trap air parcels over longer
distances (Wolf et al., 2020). In recent years, computational
fluid dynamic (CFD) models that are turbulence-resolving or
turbulence-permitting have been used for urban air quality
purposes, starting from ideal conditions (Kurppa et al., 2018;
Sanchez et al., 2016; Steffens et al., 2014; Yu and Thé, 2017)
to city-wide simulations (Cécé et al., 2016; Jeanjean et al.,
2015; Wolf et al., 2020). For instance, Sanchez et al. (2016)
simulated reactive pollutants (NOx , VOC, and O3) and their
reactions in an urban street canyon using the OpenFOAM
model. Wolf et al. (2020) utilized the Parallelized Large-
Eddy Simulation Model (PALM) to simulate NO2 and PM2.5
air quality in a coastal city and successfully identified major
sources under high-pollution meteorological conditions.

While the high-resolution models map urban air quality at
street level, the tremendous high flow of spatially resolved
data is generally lacking proper evaluation against observa-
tions. Time series of pollutant concentration data from a lim-
ited number of stationary stations are often used to compare
the model results (Biggart et al., 2020; Cécé et al., 2016; Fu
et al., 2017). For instance, Biggart et al. (2020) compared
their model predictions at street-scale resolution to eight sta-
tions across the city of Beijing with a model domain area of
∼ 400 km2. Even though a good correlation is often achieved
in these studies, the success in predicting temporal variability
does not automatically transfer to spatial variability. In this
study, we develop a very high-spatial-resolution (less than
10 m) model for traffic-related CO air quality based on the
PALM for the city of Nanjing, a megacity in eastern China
with a population of more than 8 million. We evaluate the
model performance with observations obtained from sensors
deployed on taxi platforms, which garner data with compa-
rable spatial resolution to the PALM. Multiple influencing
factors for pedestrian-level air pollution levels are also inves-
tigated.

2 Methodology

2.1 PALM

We use the PALM system to simulate the transport of traffic-
related emissions in Nanjing. This model was developed by
the PALM group at the Leibniz University Hannover and was
developed as a turbulence-resolving LES model system es-
pecially for performing on massively parallel computer ar-
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chitectures. We use PALM 4 (version number 3689) for ur-
ban applications in this study (The PALM Group, 2020),
which includes a dynamic solver for the Navier–Stokes equa-
tions and the first law of thermodynamics. The bulk of the
turbulent motions in the atmospheric boundary are explic-
itly resolved (The PALM Group, 2020). To save the model
computation time, the pollutants are considered as a passive
scalar (i.e., no chemical reactions and deposition), and a neu-
tral stratification condition is assumed (i.e., no buoyancy-
related terms are calculated). The actual vertical stability
varies at Nanjing driven by the nocturnal cycle and large-
scale weather patterns but with the neutral condition being
the most frequent (Li, 2012). A neutral stratification is also
considered as the most representative condition because sta-
ble and unstable conditions are either unfavorable or favor-
able for pollutant dispersion (Kurppa et al., 2018). The fifth-
order upwind scheme of Wicker and Skamarock (2002) is
used for both momentum and tracer advection. We use CO
as a representative pollutant as it has a relatively long life-
time (months to years) (Jaffe, 1968). So the chemical re-
actions and dry and wet deposition are generally negligible
within the timescale of model simulation (hours). A “Neu-
mann” type boundary condition is applied for CO at the top
and bottom of the model domain. A “cyclic” type is used for
its lateral boundary conditions, which yields an infinite and
periodically repeating model domain. This is a reasonable as-
sumption as our model domain only covers a portion of the
city of Nanjing. For the horizontal wind and pressure, we use
a “Dirichlet”-type top boundary condition, a “no-slip” condi-
tion for the bottom and solid walls, and a “cyclic” condition
for the lateral boundary of the model domain. The flow is as-
sumed to be steady at the inlet. The model explicitly resolves
solid obstacles (e.g., buildings) on the Cartesian grid and re-
duces the 3D obstacle dimension to a 2D topography con-
forming to the digital elevation model (DEM) format (Letzel
et al., 2008).

The model domain covers the core area of Nanjing with
the center located at 32.07◦ N and 118.72◦ E (Fig. 1). The
model horizontal resolution is 0.0001◦× 0.0001◦ (equivalent
to 9.4 m west–east × 11.1 m north–south) with a grid size of
960× 960, which covers a total area of about 10 km× 10 km.
To represent the CO air quality at pedestrian level, the model
vertical layer depth starts from 2 m from the ground to 12 m
height and stretched by a factor of 1.1 by each layer to a max-
imum of 40 m depth. The model has a total of 48 vertical lay-
ers reaching ∼ 1000 m a.s.l., which is approximately 3 times
higher than the highest building of Nanjing (Zifeng Tower,
340 m height for the top floor). Further increasing the model
domain height (e.g., to 2000 m) has no significant impact on
the modeled airflow and CO concentrations near the ground
as most of the buildings are lower than 150 m (Fig. 2a). The
model is run for 3 h with a time step of 6 s. Hourly average
data are achieved, and we use the results of the last hour for
analysis.

The topography of the model consists of two parts: base-
line elevation and building heights. The former is based on
the ASTER global digital elevation model (GDEM) dataset,
which has a native resolution of 30 m and is linearly inter-
polated to the model grid (NASA, 2021). The building data
for Nanjing are extracted from the Gaode Map (dated as
the year 2018, https://ditu.amap.com, last access: 1 August
2020). The building data include the geographical location
of the outer shape of buildings (0.0001◦× 0.0001◦ resolu-
tion) and their number of floors. We transfer the raw data
into the model grid and assume an average floor height of 3 m
(Fig. 2a). The sum of the elevation and building height data
are then used as the topographical data of the PALM. Due to
the large computational cost associated with model simula-
tion, we do not run the model for a consecutive time window
with actual meteorological conditions. Instead, we choose a
selective combination of meteorological scenarios to repre-
sent the variability of meteorological conditions at Nanjing.
For each scenario, we assume a constant geostrophic wind
field on the top of the boundary layer during model simula-
tion. Eight wind directions with 45◦ between them (N, NE,
E, SE, S, SW, W, and NW) are considered. Based on the
observed wind speed at the top of the local boundary layer
(∼ 500 m) (Chen et al., 2018; He et al., 2018), we choose 10,
6.5, and 3 m s−1 to represent high, median, and weak wind
conditions, respectively. This results in a total of 48 scenar-
ios, which is limited by our computational capacity. We thus
consider our study as a demonstration of the model approach,
and it can be improved by more scenarios.

2.2 Traffic emissions

We use a “standard road length” approach to assign the total
traffic emissions to individual roads based on different road
types and traffic flows (Zheng et al., 2009). We first trans-
fer the actual road length (L) into total standard road length
(TSL, km) of Nanjing using the road conversion coefficient
(W ):

TSL=
o∑
j=1

m∑
i=1

n∑
k=1

Li,j,k ×Wi,j,k, (1)

where i, j , and k represent the area types (i.e., urban and
suburban areas), grid cell index, and road type, respectively,
withm, n, and o representing the total numbers of area types,
grid cells, and road types, respectively. The W is calculated
as follows:

Wi,j,k =
TFi,j,k
STF

, (2)

where TFi,j,k is the traffic flow for the kth road type and ith
area type in grid j (in standard vehicles), and STF is the stan-
dard traffic flow (in standard vehicles).

The traffic emission (GEj ) of each grid cell j is calculated
based on the total standard road length in the grid cell (GSLj )
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Figure 1. Model domain of the PALM simulation used in the study for the city of Nanjing. The size of the model domain is approximately
10 km× 10 km. Map credit: ESRI 2020.

Figure 2. Spatial distribution of (a) building heights (m) and (b) traffic CO emissions (mg cell−1 s−1) (during rush hours) in the model
domain.

and the standard emission intensity per standard unit length
(SEI, t km−1).

GEj = GSLj ×SEI, (3)

where SEI is calculated based on the TSL calculated in
Eq. (1) and the city-level-based vehicle emission inventories
(E, t):

SEI=
E

TSL
. (4)

GSLj is calculated as

GSLj =
m∑
i=1

n∑
k=1

Li,j,k ×Wi,j,k. (5)

We also assign the daily mean GEj to each hour based on
the diurnal variation of the 24 h traffic flow (Fig. 2b). The
diurnal variation of the traffic flows and subsequently the
traffic emissions at Nanjing are based on the Gaode Map
(https://report.amap.com/detail.do?city=320100, last access:
last access: 15 October 2020). The total traffic CO emissions
in the model domain are 0.77 and 0.60 kg s−1 for rush and
non-rush hours, respectively.

2.3 Taxi sensor data

We evaluate the model results with observations collected
from a mobile platform that is performed during Septem-
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ber 2019–October 2020. The details of the platform instru-
ment and its deployment are described in Wang et al. (2020).
Briefly, we use two XHAQSN-508 instruments (dimensions:
290× 81× 55 mm; weight: 1.0 kg) produced by Hebei Sail-
hero Environmental Protection High-tech Co., Ltd. (Hebei,
China), which include an internal CO gas sensor (detectable
CO range: 0 to 50 mg m−3) and are installed on the top of
two Nanjing taxis (∼ 1.5 m above ground). The sensor is ca-
pable of continuously measuring CO concentrations at a pro-
grammable frequency of once every 10 s. The inlet system is
also optimized to minimize self-sampling and gas sampling
losses. The spatial coordinates are also recorded by a GPS
device included in this instrument (u-blox, Switzerland). The
monitoring and location data are simultaneously transmitted
to a remote server in real time through wireless communi-
cation, and the real-time measurement data can be viewed
through a web page or an Android app. One major advantage
of this mobile platform is the minimum maintenance cost, as
samples are automatically collected during the operation of
the taxis. An analysis of the sensing power, defined as the
fraction of city road network sampled by a taxi fleet, also
demonstrates that a remarkably small number of taxis can
scan a large number of streets (O’Keeffe et al., 2019; Wang
et al., 2020).

The instrument is calibrated once per month against a sta-
tionary instrument (T300 CO Analyzer by Teledyne API) at
the SORPES observation station in the Xianlin Campus of
Nanjing University (https://as.nju.edu.cn/as_en/obsplatform/
list.htm, last access: 1 November 2020). During calibration,
the instrument is taken back to the campus and placed back-
to-back to the calibrating instrument in the station. The cal-
ibration lasts for at least seven days, and the parameters for
the sensor retrieval algorithm are adjusted to make sure the
difference between the sensor-retrieved data and the station
data is < 1 % (Wang et al., 2020). As only traffic-related
emissions are considered in the PALM, we add the model
results to the background concentrations of Nanjing for com-
parison to the observed data by the mobile platform (but the
pure model output is used for other analyses). The hourly
background CO concentrations are calculated as the mini-
mum of measurements from all the nine national air qual-
ity monitoring stations in Nanjing metropolitan area (https:
//quotsoft.net/air/, last access: 24 February 2021). Seven of
these stations are located inside the model domain represent-
ing different functioning districts of the city. The remaining
two are located at the suburbs to the west and northeast of the
city center, which could be a reasonable representative for
background concentrations depending on wind directions.
Corresponding hourly meteorological data of Nanjing city
are obtained from the National Meteorological Information
Center of China (http://data.cma.cn/en, last access: 1 Novem-
ber 2020). We include data on both rainy and non-rainy days
as CO is not dissolvable.

3 Results and discussion

3.1 Very high-resolution modeled CO concentration

Figure 3 shows an example of the spatial distribution of the
modeled traffic-related ground-level (0–2 m above ground)
CO concentrations during peak hours (with an east wind and
6.5 m s−1 at the top of boundary layer). The very high res-
olution of the model reveals a detailed geographical disper-
sion pattern of CO concentrations in and out of the road net-
work. The average modeled CO concentrations inside the
road network are 0.76 mg m−3 (with 25 % and 75 % per-
centiles as 0.45 and 0.94 mg m−3, respectively), which are
much larger than those outside the network: 0.22 (0.14–
0.24) mg m−3. The lowest concentrations are modeled over
regions with a less dense road network and fewer water
bodies (∼ 0.1 mg m−3). Higher ground-level concentrations
are modeled over major highways with substantially higher
emissions than other roads (Fig. 2b). The concentrations are
also higher over interceptions of roads as the emissions are
specified as the sum of those of the intercepted roads. The
model simulates clear plumes downwind of major roads, es-
pecially if no obstacles existed in that direction. The most
apparent plume is simulated in the northeast of the Xu-
anwu Lake (refer to the map in Fig. 3b). The high emissions
are swept for about 1 km westward from a traffic center at
the northeast edge of the lake. Highways such as the Nei-
huanxi line also produce apparent westward plumes, whereas
downwind buildings may cause extra turbulence to smoothen
out the signal. By contrast, the emissions from regions
with dense buildings are generally trapped within the street
canyons (e.g., the city center), with leakage from gaps be-
tween buildings (Fig. 3c). Overall, the modeled ground-level
concentrations follow a two-mode Gaussian distribution (i.e.,
a sum of two Gaussian functions; Fig. 4), with one for resi-
dential streets (with a geometric mean of 0.17 mg m−3) and
the other for arterial roads, highways, and the nearby regions
(with a geometric mean of 0.28 mg m−3).

3.2 Model evaluation

The rich information provided by the model is compared
to observations obtained by the mobile monitoring platform
(Figs. 5 and 6). We sample the hourly-mean model results
with the same location, emission level (rush or non-rush
hours), and wind speed/directions as the observations. We
aggregate the model results into a 100 m resolution due to
the relatively low sampling frequency of the mobile sampler
(10 s, equivalent to ∼ 100 m), which is indeed a drawback
and can be improved by higher time-frequency sensors. The
sum (0.92± 0.40 mg m−3) of model results that are caused
by traffic-related sources (0.36± 0.32 mg m−3) and regional
background concentrations (0.56± 0.28 mg m−3) agree well
with the measured CO concentrations (0.90± 0.58 mg m−3,
n= 114502) (p< 0.01). Point-by-point comparison reveals
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Figure 3. Modeled ground-level CO concentrations (mg m−3) during rush hours by the PALM with wind from the east and speed as 6.5 m s−1

in the top of the boundary layer (a). Panel (b) shows the corresponding city map. Panel (c) shows a close-up of the Xinjiekou area with the
boundary shown as a red rectangle in panel (b) (rectangle 1). Grey areas represent tops of buildings. Map credit: ESRI 2020.

Figure 4. Frequency distribution of modeled ground-level CO con-
centrations during rush hours under the east wind and 6.5 m s−1 at
the top of boundary layer. The distribution is fitted with a two-mode
Gaussian model. The yellow (residential streets) and orange (arte-
rial roads, highways, and the nearby regions) curves represent the
two Gaussian modes.

that most of the data points fall near the 1 : 1 line and are
within lines for a factor-of-2 difference (Fig. 5). The model
tends to overestimate the measured CO concentrations over
the Neihuanxi Line (the line of points on the left of Fig. 5;
location marked in Fig. 1), which is a viaduct with better ven-
tilation than ground-level roads. However, our model consid-
ers all the emissions at the ground level and thus simulates
much higher concentrations than observations over this line.
This also demonstrates the significant air quality benefit of
building a viaduct in an urban environment.

As both the modeled and measured CO concentrations
vary drastically, we group the data based on the sampling

Figure 5. Comparison of measured and modeled ground-level CO
concentrations. Colors represent the total number of matching mea-
sured and modeled values contained within distinct hexagons. The
black line indicates 1 : 1, and dashed lines mark a factor of 2 differ-
ence.

time and meteorological conditions and compare the spatial
patterns of model results and the measurements in Fig. 6. We
find the model captures many of the observed spatial features
under a variety of emission and meteorological conditions.
Take 10 m s−1 east wind during non-rush hours as an exam-
ple (Fig. 6a and b): higher concentrations are modeled and
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Figure 6. Comparison between taxi-sensor-measured (odd columns) and modeled (even columns) ground-level CO concentrations for se-
lected combinations of wind speed, directions, and rush/non-rush hours. As the taxi sensor data have a temporal resolution of 10 s (roughly
equivalent to 100 m given an average vehicle speed of 40 km h−1), both the measurements and model results are regraded to a 100 m res-
olution grid. The wind and emission information is shown at the top of the panels in this format: “wind direction | wind speed | emission
level rush or non-rush hours”. The mean of the data is shown at the top of each panel, with the modeled one as the sum of the model
output and regional background from national stations. Panel (q) shows the coefficients of determination (r2) of a linear regression between
taxi sensor data and model/station data under different emission and meteorological conditions. Blue bars represent the regression between
measured and model + regional background, while red and yellow bars are for the measured vs. model only and measured vs. station data
only, respectively. Note the color bar for panels (a)–(p) is in panel (q).

measured in the city center, the highway in north city, and the
arterial roads in the southwest corner of the model domain,
while lower concentrations are in the middle of the west part
and southeast corner of the model domain. Similar levels of
agreement between the spatial patterns of measurements and
model results are achieved for other conditions.

Figure 6q shows that the coefficients of determination
(r2) are generally higher (0.51± 0.16) during non-rush hours

with middle and low wind speeds, due to the relatively larger
sample sizes under such conditions. The r2 values for high
wind conditions and rush hours will be increased as the accu-
mulation of taxi sensor data (either longer sampling periods
or more sensors). As the model data used in this comparison
include the regional background, we calculate the r2 values if
only using the station data to rule out the possibility that the
agreement in spatial pattern is caused by station data. Also,
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taking the r2 values during non-rush hours with middle and
low wind conditions as an example, only using station data
lowers the r2 values to 0.28± 0.23. This indicates that our
model indeed carries useful spatial information that signifi-
cantly improves the comparison with sensor data.

One drawback of the taxi platform is that the popular
streets are easily covered and sampled repeatedly, but un-
popular segments are rarely visited (O’Keeffe et al., 2019;
Wang et al., 2020). The sensor data used in this study mainly
cover the highway and arterial roads but generally leave the
model results for residential streets unevaluated. We there-
fore supplement the routine taxi operation data with two one-
day taxi cruise campaigns, which cover all the public roads in
two representative regions (especially including the residen-
tial ones less visited by taxis), as shown in Fig. 7 (the location
of campaign is shown in Fig. 3b). Overall, the model captures
the observed spatial patterns reasonably well with r2 values
for the two campaigns of 0.50 and 0.37, comparable to the
data collected during normal taxi operations (Fig. 6q). The
first campaign is in the city center (Fig. 7a and b) with the
traffic-related CO concentrations relatively more uniformly
compared to the second one, which covers a larger area and
includes highways, arterial, and residential roads (Fig. 7c and
d). The model also captures the relatively higher concentra-
tions in the highway near the west edge in the second cam-
paign (Fig. 7c and d), as well as the generally decreasing con-
centrations from highways, arterial roads, to residential ones.
Even though the model has highly simplified setups and the
mobile sensors have relatively large uncertainties compared
with reference method (Wang et al., 2020), the agreement
between them lend both approaches confidence.

3.3 Influencing factors

3.3.1 Emissions, wind speed, and directions

Figure 8 shows the mean ground-level CO concentrations
over the whole model domain under different emission
strengths and meteorological factors. We find the wind speed
is an important controlling factor for modeled CO concen-
trations. The average ground-level CO concentrations dur-
ing rush hours with a wind speed of 3 m s−1 range from
0.37–0.46 mg m−3. The concentrations with 3 m s−1 wind
are ∼ 2.4 and ∼ 1.8 times higher than those with 10 m s−1

(0.16–0.19 mg m−3) and 6.5 m s−1 (0.21–0.25 mg m−3) wind
speeds, respectively. The concentration differences between
10 and 6.5 m s−1 are about 30 %. It clearly suggests a non-
linear dependence of concentrations on wind speed with
much higher concentrations over stagnant conditions, consis-
tent with previous studies (Mumovic et al., 2006; Wolf et al.,
2020). Indeed, convective transport of pollutants is greatly
reduced under low wind speed conditions, which elevates CO
concentrations at the pedestrian level. On the other hand, the
response to emission strength is almost linear: the concentra-
tions during rush hours are 27 % higher than non-rush hours

Figure 7. Comparison between taxi-sensor-measured (a, c) and
modeled (b, d) ground-level CO concentrations during two intensi-
fied observation campaigns during 26–27 April 2020. The locations
of the campaigns are shown in Fig. 3b (rectangles 3 and 4 for the 26
and 27 April, respectively).

given the same meteorological conditions. The concentra-
tions with different wind directions vary by ∼ 20 %, with the
highest concentration consistently shown for the west wind
and the lowest for the northeast wind. This pattern could
be explained by the spatial pattern of emission distributions:
with higher emissions in the west part of the model domain
and lower over the northeast (where a large lake is located).
Wind from cleaner regions (e.g., northeast) helps to blow out
the traffic-related emissions located at the other side of the
model domain, and vice versa.

3.3.2 Street direction

Even though the wind direction seems not to be an impor-
tant influencing factor for model domain-average concentra-
tions, it is a vital factor for individual street canyons. Fig-
ure 9 shows the relationship between the mean ground-level
CO concentrations and the angle between wind and street di-
rections. We find the modeled concentrations are the highest
when the wind direction aligns with streets. The concentra-
tions decrease until the angle increases to ∼ 20◦, but no sig-
nificant differences are modeled when the angles continue
to increase. A wind direction parallel with the street mainly
transports CO along the canyon, which traps pollutants in-
side of the street. By contrast, a perpendicular wind can blow
pollutants outside of the canyon through gaps between build-
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Figure 8. Mean modeled ground-level CO concentrations (with 30 % and 70 % percentiles) over the whole model domain with different
wind speeds, wind directions, and emission levels.

ings, which reduces the CO concentrations inside. Similar
results have been found in smaller-scale studies. For exam-
ple, through comparing pollutant levels with different wind
directions, Kurppa et al. (2019) found lower pedestrian-level
pollution when wind direction is closer to perpendicular with
a boulevard and suggested building the shortest wall paral-
lel to the road to increase ventilation and create optimal air
quality. Solazzo et al. (2011) found both the highest observed
and modeled NOx concentrations inside a street canyon un-
der a “quasi-parallel” situation. Mumovic et al. (2006) also
suggested an accumulation effect along those canyons whose
axes are parallel to the wind direction.

3.3.3 Building heights

The influence of street and wind directions on modeled CO
concentrations is more obvious in a latitude–height cross sec-
tion along a north–south direction street (Fig. 10). Figure 11
shows the CO concentrations in three longitude–height cross
sections (marked as 1, 2, and 3 in Fig. 10a) to illustrate
the leakage plumes from gaps between buildings. The mod-
eled CO concentrations decrease sharply with height, as the
sources are from near the ground (Fu et al., 2017). The build-
ings in the east side of this road that is close to the lake are
lower than those in the west. The modeled CO concentrations
are extended to a higher altitude behind the tall buildings un-
der west wind conditions (Fig. 10a). The upwind buildings
cause wake flows that transport pollutants toward the build-
ings at pedestrian level and make an accumulation zone at
the leeward corners (Fig. 11a and d). By contrast, the traffic-
related emissions are not elevated to a higher altitude with the
east wind due to the short buildings on that side (Fig. 10b).
Buildings located downwind of emission sources tend to cre-
ate a flow pattern that blows pollutants away from them near
the ground (Fig. 11b and c). Previous studies also found

similar concentration gradients between leeward and wind-
ward of buildings when wind direction is perpendicular to the
street canyon (Fu et al., 2017; Mumovic et al., 2006; Solazzo
et al., 2011). For example, Fu et al. (2017) found that pol-
lutants emitted inside the street canyon with lower leeward
building heights than windward tend to disperse out of the
canyon, and vice versa. When buildings exist on both sides of
the street, the flow and concentration distributions are largely
determined by which side the taller building is located on
(Fig. 11e and f). The concentrations inside the street canyon
are higher if the upwind building is taller than the downwind
one.

We also evaluate the relationship between the mean
ground-level CO concentrations and the building heights in
the upwind and downwind side of the street canyon in the
whole model domain (Fig. 12). We find the existence of up-
wind buildings generally increases the CO concentrations in-
side the street canyon compared to cases without buildings
in that direction (i.e., zero building height) (Fig. 12a). As
discussed above, this is associated with the wake flow pat-
tern of the building (Fig. 11a, d, and e). The concentrations
show no significant difference when the upwind buildings are
∼ 10–45 m in height but decrease when building height fur-
ther increases (Fig. 12a). The influence of downwind build-
ing heights are largely monotonically with lower concentra-
tions for higher heights. The interaction of upwind and down-
wind building heights is evaluated by their differences (e.g.,
upwind – downwind heights). Overall, the concentrations are
higher over street canyons with higher upwind buildings, but
the enhancement in concentrations begins to decrease if the
difference is larger than ∼ 30 m, consistent with Fig. 12a.
Similarly, higher downwind buildings bring down the con-
centrations inside the canyon monotonically, consistent with
Fig. 12b.
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Figure 9. Influence of the angle between the directions of the wind and the street on modeled ground-level CO concentrations. Wind speed
is specified as 6.5 m s−1 with emissions as that during rush hours.

Figure 10. Spatial distribution of modeled CO concentrations under
west (a) and east (b) wind directions (3 m s−1) in latitude–height
cross sections along Zhongyang Road during rush hours (marked as
a red line 2 in Fig. 3b). The outlines of buildings on both sides of
the road are shown as black (west side) and blue (east side) lines.
Red triangles show the locations of major road intersections.

Figure 12c illustrates the influence of the variation of
building heights within 50 m distance on the modeled
ground-level CO concentrations. It indicates that the concen-
trations first increase when the standard deviation of building
heights increases from 0 to∼ 10 m, reflecting the trapping ef-
fect of upwind buildings compared to flat surfaces. The con-
centrations significantly decrease when the nearby buildings
are more variable. The variation in building heights has been
demonstrated to increase the ventilation rates and the vertical
turbulent flux density, which helps to lower pedestrian-level
pollution (Kurppa et al., 2018). Fu et al. (2017) also found
the concentration inside the street canyon first increased with
the symmetric index of building heights but decreased when
the index became larger. These results suggest putting higher

Figure 11. Spatial distribution of modeled CO concentrations and
wind vectors in longitude–height cross sections along three build-
ings on Zhongyang Road (marked as stars in Fig. 10a). The concen-
tration distributions under west (a, c, e) and east (b, d, f) winds are
shown. Note the vertical velocity is scaled by a factor of 2.5.

buildings in the prevailing downwind side of a road with
large variability in building heights and multiple gaps be-
tween them generates the best pedestrian-level air quality.

3.3.4 Distance to major roads

As discussed above, the modeled ground-level CO concen-
trations are higher inside the road network than outside of
it. Figure 3 shows a clear decreasing trend of modeled con-
centrations from the road network to residential regions far
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Figure 12. Relationship between geometric mean modeled ground-
level CO concentrations and building heights in the upwind (a)
and downwind (b) directions, (c) the standard deviations of nearby
(within 50 m distance) building heights, and (d) the difference be-
tween the upwind and downwind building heights. Wind speed is
assumed to be 6.5 m s−1, and emissions are specified as that during
rush hours.

away from the major roads. We thus calculate the distance
from a given location to the nearest major roads (d), which
include highways and arterial roads with emissions consid-
ered in this study (Fig. 2b). Figure 13 shows the mean mod-
eled ground-level CO concentrations (C) and their standard
deviations as a function of d . We used an exponential equa-
tion to fit this function: C(d)= α+β exp(−d/k) following
Apte et al. (2017), where α represents the modeled back-
ground contribution from traffic-related sources, i.e., C(∞).
β is the sensitivity of C to d, and k represents the spatial
scale of the decay of C. The equation fits the modeled means
well, despite the relatively large standard deviations espe-
cially when d is less than ∼ 50 m (Fig. 13). We find the α
value decreases as wind speed increases, indicating lower
background values with higher wind speed as discussed in
the Sect. 3.3.1. Similarly, the β values also decrease with
higher winds. However, we find nearly identical k values for
all the wind speeds, suggesting that it is a universal parame-
ter controlled by the atmospheric lifetime of pollutants but
not influenced by meteorological conditions. Indeed, Apte
et al. (2017) also found different k values for NO, BC, and
NO2. Our k values are much smaller than those calculated
by Apte et al. (2017) because they only consider the distance
to the nearest highways, and their d values are much larger
than ours. Our calculations are close to the model results of
Biggart et al. (2020) in that NO2 concentrations also become
quasi-stable ∼ 50 m away from a major highway.

Figure 13. Relationship between the modeled ground-level CO
concentrations and the distance to the nearest major roads (assum-
ing an east wind with emissions during rush hours). The circles and
error bars are means and standard deviations, respectively.

4 Conclusions and implications

This study demonstrates the potential of large-eddy simula-
tion in urban air quality modeling. Future directions of the
model include a more dynamic emission inventory that con-
siders real-time vehicle speed and traffic congestion (Pan et
al., 2016). The model frame is also readily expandable to in-
clude other pollutant sources (e.g., point and area sources),
multiple pollutants, and their chemical reactions (Wolf et al.,
2020; Zhong et al., 2015). More realistic meteorological con-
ditions possibly nudging from larger-scale weather and cli-
mate data could replace the limited number of assumed sce-
narios as adopted in this study (Heinze et al., 2017).

The revealed high-resolution spatial variability and its as-
sociation with underlying meteorological conditions are use-
ful for developing parameterization schemes for statistical
models like AERMOD and ADMS-Urban, and land use re-
gression models (Jerrett et al., 2005). As high-resolution in-
formation on urban building and traffic distribution is becom-
ing more available, the approach could be relatively easily
applied to other cities. The simulated tremendously high-
resolution maps of concentrations in all major urban areas
will be a vigorous part of the smart city system (Silva et
al., 2018) and serve as a data assimilation platform for many
other products from satellite remote sensing and mobile plat-
forms. The model results give hints for source contribution
and hotspots for urban air pollution, which could inform ur-
ban planning, air quality management, and risk mitigation.
Combined with personal GPS data, the very high resolution
of air quality map revealed here can inform epidemiological
studies and health risk analysis and alter personal behavior
(Gao et al., 2019; Larkin and Hystad, 2017).

Code and data availability. The model code and validation data
used in this work are available at http://cn.ebmg.online/data/PALM/
palm.zip (Zhang, 2021).
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