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ABSTRACT: We quantitatively examine the relative importance of
uncertainty in emissions and physicochemical properties (including
reaction rate constants) to Northern Hemisphere (NH) and Arctic
polycyclic aromatic hydrocarbon (PAH) concentrations, using a
computationally efficient numerical uncertainty technique applied to
the global-scale chemical transport model GEOS-Chem. Using
polynomial chaos (PC) methods, we propagate uncertainties in
physicochemical properties and emissions for the PAHs benzo[a]-
pyrene, pyrene and phenanthrene to simulated spatially resolved
concentration uncertainties. We find that the leading contributors to
parametric uncertainty in simulated concentrations are the black
carbon-air partition coefficient and oxidation rate constant for
benzo[a]pyrene, and the oxidation rate constants for phenanthrene
and pyrene. NH geometric average concentrations are more sensitive to uncertainty in the atmospheric lifetime than to emissions
rate. We use the PC expansions and measurement data to constrain parameter uncertainty distributions to observations. This
narrows a priori parameter uncertainty distributions for phenanthrene and pyrene, and leads to higher values for OH oxidation
rate constants and lower values for European PHE emission rates.

■ INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and
carcinogenic environmental contaminants.1 As persistent organic
pollutants (POPs) that are transported through the atmosphere
across national boundaries after emission, PAHs are regulated
internationally by the Convention on Long-Range Trans-
boundary Air Pollution (CLRTAP).2 Despite regulatory efforts,
PAHs continue to be transported via the atmosphere to the
Arctic,3−6 far from source regions. In this study, we quantitatively
examine the relative importance of emissions and physicochem-
ical parametric uncertainty to Northern Hemispheric (NH) and
Arctic PAH concentrations, using efficient numerical uncertainty
techniques applied to the global-scale chemical transport model
(CTM) GEOS-Chem.
The pathways by which PAHs reach the Arctic have been

studied with numerical models of varying complexity.7−13

However, our understanding of these pathways is limited by
substantial uncertainty associated with the physicochemical
parameters (including reaction rate constants, partition co-
efficients and energies of phase change) that govern the
atmospheric fate of PAHs. Some physicochemical parameters

representing PAH behavior, such as oxidation rate constants and
black carbon partition coefficients, are poorly constrained by
measurements or several have not been measured directly.14−16

For some PAHs, for example, phenanthrene (PHE; three ring),
physicochemical parameters important to their atmospheric fate
have been relatively more studied than for the larger PAHs like
benzo[a]pyrene (BaP; five ring) and pyrene (PYR; four ring).
Even for PHE, measurements of physicochemical parameters can
differ by more than a factor of 2.15 Limited knowledge of
emissions sources and associated uncertainty also contributes to
uncertainty in atmospheric transport, as emissions factors for
some processes (e.g., waste incineration, biomass burning) can
vary by orders of magnitude.17

Model uncertainty has been studied for multimedia fate
models of persistent organics.18−20 Multimedia model analyses
have found that chemical properties have a larger influence on
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persistence and long-range transport potential than model
parameters such as spatial scales, media heights/depths, and
land and water surface fractions.18 Detailed Monte Carlo
analyses have been performed for multimedia models, finding
that emissions and degradation constants were the most
influential sources of uncertainty in DDT concentrations19 and
that partition coefficients and reaction rate constants accounted
for more than half of the uncertainty in mercury concentrations
in air and the surface ocean.21

PAHs have been studied using finer-scale models at both the
global and regional scales.7,12,13,22,23 Through comparison to
spatially and temporally fine-scale measurements, these studies
show that highly spatially resolved models can be useful in
predicting the pattern of exposure to PAHs, an important factor
for human health impacts. While multimedia models are
computationally efficient and thus can quantitatively examine
relative influences of parameters on uncertainty, they lack the
spatial resolution and ability that CTMs possess to resolve the
episodic nature of atmospheric transport.
Monte Carlo-type methods like those used for multimedia

models19 can be prohibitively computationally expensive for
more finely spatially resolved models, as they require on the
order of thousands of samples for detailed analyses. Individual
simulations run with complex atmospheric CTMs such as
GEOS-Chem can require hours to days of computational time,
leading to years for the full Monte Carlo analysis. Thus, first-
order parameter sensitivity tests are often used to characterize
uncertainty in spatially resolved models.12,23,24

One previous study24 reported quantitative estimates of the
relative importance of physicochemical parameter uncertainty
and emissions uncertainty in PCB153 and α-HCH simulations
by the large-scale, spatially resolved (15 × 15°) BETR Research
model using a first-order error propagation method. Though
first-order error propagation methods are computationally
cheaper than Monte Carlo analysis, they do not directly quantify
the effect of parameter uncertainty interactions. Polynomial
chaos (PC)-based methods can greatly reduce the computational
cost of uncertainty propagation for CTMs compared to Monte
Carlo methods, while approximating the resulting uncertainty
distributions more closely than first-order methods by extending
to higher order. Parametric uncertainty in complex chemical
mechanisms has been quantified using PC methods in a number
of applications.25−28 PC-based methods quantify the relative
importance of each parameter, as well as account for their
interactions in the model system, a significant advantage over
traditional model parameter sensitivity tests. They also provide
computational efficiency while retaining the spatial and temporal
fidelity of CTMs.
We present here a first application of PC-based methods to a

global atmospheric CTM of POPs. We use this analysis to
quantify the contributions of emissions and physicochemical
parameter uncertainty to NH- and Arctic-average concentrations
of PHE, PYR, and BaP. We then combine the results of our PC
analysis with measurements from long-term observation sites to
constrain the values of these parameters.

■ MATERIALS AND METHODS
To quantify uncertainty in the GEOS-Chem PAH simulations,
we compare simulated concentrations and associated uncertain-
ties to measurements at nonurban sites, and use these
measurements and their uncertainties in a Bayesian analysis to
constrain the probability distributions of the physicochemical
parameters. Throughout this work we will refer to model

“parametric uncertainty”, which is the uncertainty in simulated
concentrations resulting directly from the uncertainty in the
model input parameters; that is, physicochemical properties and
emissions magnitudes.

GEOS-ChemModel. The simulations we assess in this study
are carried out using the GEOS-Chem PAH chemical transport
model.12 This model has been used in previous studies to
simulate long-range atmospheric transport of PAHs and has
allowed comparison to measurements where it has been able to
resolve meteorologically driven episodic high-concentration
events.12 Evaluation of the model against measurements in
both midlatitudes and the Arctic, and traditional sensitivity tests
have been conducted previously; we refer the reader to the
referenced papers for a detailed assessment of model
perfomance.12,13 Here, we briefly describe major features of the
model, including meteorology, emissions, chemistry, and gas-
particle partitioning. GEOS-Chem uses assimilated meteorology
from the NASA Goddard Earth Observing System’s GEOS-5
data set at a temporal resolution of 6 h, a horizontal resolution of
0.5 × 0.667° regridded to 4 × 5° for computational efficiency,
and 47 levels vertically. The simulations for this study were run
for the years 2006−2008. PAH emissions in the model come
from the inventory of Zhang and Tao,17 which represents annual
emissions from the year 2004, is resolved on the national scale,
and includes details for individual sectors and PAHs but is not
time-resolved, meaning the emissions are not seasonally or
annually varying. Emissions are discussed in more detail in
following sections. Each model run begins with a “spin-up”
period of one simulated year to negate the transient effects of
initial conditions.
Upon emission, the model partitions PAHs between the gas

and aerosol phases using a black carbon-air partition coefficient
(KBC) to represent partitioning to black carbon (BC) aerosol and
an octanol−air partition coefficient (KOA) to represent
partitioning to organic carbon (OC). The overall gas-particle
partitioning is governed by a dual OC absorption and BC
adsorption model12 based on the Dachs-Eisenreich29 equation.
Both OC and BC concentrations are prescribed as monthly
averages in the PAH simulations, precalculated from full
chemistry GEOS-Chem simulations10,30 for computational
efficiency. Gas-particle partitioning is recalculated at each
chemistry time step of GEOS-Chem (60 min). The effect of
using this coarse time resolution of prescribed particle
concentrations was found to be small compared to the
parametric uncertainties discussed below.13

Each of these partition coefficients’ temperature dependence is
determined by an internal energy of phase change according to
the van’t Hoff relationship. These internal energies are governed
by enthalpies of phase change. The enthalpy of vaporization
ΔHvap is the uncertain parameter that determines the sensitivity
of particle partitioning to changing temperature, while the
enthalpy of solvation in liquid water ΔHsol in combination with
ΔHvap determines that of wet deposition.
We simulate the oxidation of gas phase PAHs by reaction with

hydroxyl radicals (OH).Monthly average OH concentrations are
prescribed by a GEOS-Chem full chemistry simulation31 with a
daily cycle overlaid on these monthly averages. PAH reaction
with OH is represented by a second order reaction with reaction
rate constant kOH. On-particle oxidation by ozone is simulated
using the parametrization of Kahan et al.32

Both gas- and particle-phase PAHs undergo wet deposition in
the simulations. Gas-phase PAH is scavenged by liquid water
according to the air−water partitioning coefficient KAW, which is

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b01823
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.est.5b01823


temperature dependent according to ΔHAW (a combination of
ΔHsol and ΔHvap) following the van’t Hoff relationship. Dry
deposition for gas-phase PAH is simulated according to Wang et
al.,33 with lipophilic uptake scaled by the KOA.

12 A complete
evaluation of GEOS-Chem simulations of PAHs can be found in
the original work by Friedman and Selin.12 The seven uncertain
physicochemical parameters mentioned above are included in
our analysis for each PAH.
Polynomial Chaos. The PC-based estimator uses orthogo-

nal polynomials to approximate GEOS-Chem model output as a
function of model inputs. The polynomial expansion of the
model output to be estimated takes the form
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where the estimator η of degree d is a function of the polynomials
Hj of order j, the M variables ξk representing model inputs, the
expansion coefficients αj,k and βk,l, and higher order coefficients.
The terms not shown in the equation are cross terms of degree
greater than two, which include the product of up to d Hermite
polynomials of different variables, analogous to the second order
cross terms shown. In this study, we truncate the polynomial after
third order. To obtain the expansion coefficients, one model run
at a unique set of inputs is performed for each term in eq 1.34 The
set of inputs for the model runs for each degree’s terms are the
values corresponding to the roots of the next degree’s
polynomials. The outputs of these model runs and the
corresponding sets of input values are used to set up a system
of equations to solve for the expansion coefficients.27 Further
description, along with validation, of the PC expansion can be
found in the Supporting Information (section S4).
We use the polynomial estimator to directly infer properties of

the uncertainty distribution of model output (in this case total
(gas plus particulate phase) PAH mass concentration) without
relying on Monte Carlo methods, which is accomplished using
the analytical forms of the mean, variance and skewness from the
polynomial coefficients.27 We also calculate the portion of the
total output variance contributed by each input parameter using
the expansion coefficients.27,28

Physicochemical Parameter Uncertainties. We conduct
an extensive review of the literature for experimentally
determined values of each of seven uncertain physicochemical
parameters for the three PAHs investigated in this study, and
construct probability distributions based on the available data
(summarized in Supporting Information Tables S1−S3). The
distributions (Table 1 and discussed below), are for the
parameters that most directly affect the simulated atmospheric
fate and transport of the PAHs based on previously conducted

traditional model sensitivity testing.12 Model processes that are
sources of uncertainty for all chemicals (including non-POPs)
simulated by GEOS-Chem, such as advection and wet deposition
schemes, are not the focus of this study.

Partition Coefficients (Air−water: KAW, Black Carbon−Air:
KBC, Octanol−Air: KOA). Since the partition coefficients used in
the model are experimentally determined and reported in log
form, we estimate their uncertainty distributions as normal
distributions of the log values, with the means and standard
deviations derived from literature values (see SI for details and
references).
KBC, which describes the fraction of PAH found in the BC

phase given an amount of BC particulate matter, is the
combination of KAW and the BC-water partition coefficient
(KBC‑Water),

35

= − + −K K Klog( ) log( ) log( )BC AW BC water (2)

where KBC‑Water gives the ratio of concentrations of PAH in the
BC particulate phase to dissolved PAH at equilibrium. Since KBC
itself is not an independent parameter due to its relationship to
KAW, we use the independent KBC‑Water instead as the uncertain
parameter for this study.

Enthalpies of Phase Change (ΔHvap andΔHsol).We estimate
the uncertainty distributions for the enthalpy of vaporization
(ΔHvap) and the enthalpy of solvation (ΔHsol) for PHE, PYR and
BaP as normal distributions with the means and standard
deviations of a collection of literature values ofΔHvap orΔHsol for
each PAH (see SI for details and references).

On-Particle Ozone Oxidation Rate Constant (kO3). For all
three PAHs, we use the reported “A” and “B” kinetic parameter
values and their uncertainties from Kahan et al.32 as model
inputs. Across all atmospheric ozone concentrations, the B-
parameter dominates the contribution to uncertainty in kO3, so
we neglect A-parameter uncertainty in our analysis.

OH Oxidation Rate Constant (kOH). For PHE, we estimate
the uncertainty distribution from three literature values and their
associated uncertainties.14,36,37 The mean value of the normal
uncertainty distribution is estimated by the uncertainty-weighted
mean of these three values, and the standard deviation of the
distribution is estimated by the standard deviation of the
weighted mean.
While there is no literature value for BaP’s or PYR’s kOH, values

can be obtained from the Atmospheric Oxidation Program
software AOPWIN, which uses an ionization potential-activity
relationship,38

= − −kln( ) 4.345 2.494(IP)OH (3)

where kOH has units of cm3 molec−1 s−1 and IP is the ionization
potential in units of eV.

Table 1. Uncertainty of Physicochemical Properties in GEOS-Chem PAH Simulations (Means and Standard Deviations of Normal
Distributions)

parameter role BaP value (std.) PYR value (std.) PHE value (std.)

log10 KBC‑Water (unitless) BC partition coefficient 8.8 (0.4) 7.5 (0.2) 6.85 (0.3)
log10 KOA (unitless) OC partition coefficient 11.27 (0.21) 8.78 (0.08) 7.58 (0.06)
ΔHvap (kJ/mol) enthalpy of vaporization 99.9 (7.4) 82.3 (3.9) 68.3 (8.9)
log10 KAW (unitless) air−water partition coefficient −4.42 (0.08) −3.34 (0.07) −2.81 (0.06)
ΔHsol (kJ/mol) enthalpy of solvation 37.9 (17.7) 37.9 (8.9) 34.5 (2.0)
kOH (cm3 molec−1 s−1) (log10 kOH for BaP and
PYR)

gas-phase oxidation rate constant −9.88 (0.26) (log10 kOH) −10.1 (0.35) (log10 kOH) 1.9 × 10−11 (0.4 × 10−11)

kO3 (10
−7 s−1, at 50 ppb O3) on-particle oxidation rate

constant
24.5 (3.5) 2.92 (1.21) 2.91 (0.92)
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We use the mean and standard deviation of the National
Institute of Standards and Technology collection of reported
ionization potentials for BaP39 to estimate a normal distribution
that results in a log-normal distribution of IP-derived kOH values.
Similarly, for PYR we use the mean and standard deviation of the
collection of reported PYR IPs40 to estimate the uncertainty
distribution for PYR’s kOH.
Regional Emissions Uncertainties. Emissions uncertainty

results from uncertainties in both emission activities (quantity of
a given type of emitting process) and emission factors (PAH
emission quantity per activity). The total PAH emission E due to
a process i can be divided into those two elements:

=E A Fi i i (4)

where Ai is the emissions activity of process i and Fi is the
emission factor for that process. Fi can be uncertain to a much
larger degree than Ai

17 because the conditions under which each
emitting process is carried out in reality are highly varying but
summarized by a single value. Measurements of Fi of the same
process by different experimenters can yield orders of magnitude
differences.17 For example, Fi associated with diesel fuel in the
transport sector will depend on such factors as the type of fuel
burned, type of engine burning the fuel, and temperature and
condition of the engine. PAH emissions processes with the
largest uncertainties in Fi include primary aluminum production,
use of traffic gasoline, diesel, and kerosene, industrial coal
burning, and nontransport petroleum combustion.17

Given that there are distinct source contributions to PAH
emissions and their uncertainties in different regions of the globe,
we define discrete emissions regions, and calculate an a priori
probability distribution for the total emissions of each region. We
choose the regions of North America, Europe, South Asia, East
Asia, and Africa because of the large magnitude of emissions
(South Asia, East Asia, Africa), and proximity to the Arctic
(North America and Europe). We estimate the uncertainty
distribution of total emissions of each region using Monte Carlo
sampling over each country’s Ai and the Fi uncertainty
distributions17 and assume that the spatial distribution of
emissions within each region remains fixed. Regional emission
distributions (Supporting Information Figures S1−S3) are then
used as input parameters, along with physicochemical parame-
ters, in the above-described PC analysis.
In-Situ Observations.We use observed annual average total

(gas+particulate) BaP, PYR, and PHE concentrations from each
of 10 sites monitored by the Co-operative Programme for
Monitoring and Evaluation of the Long-range Transmission of
Air Pollutants in Europe (EMEP), Integrated Atmospheric
Deposition Network (IADN), and Environment Canada (EC)
observation networks in the Northern Hemisphere (NH) for
comparison to model values. All observations were collected at
land-based nonurban sites using high-volume air samplers.
Particle-bound PAHs were collected on glass fiber filters, and
volatile PAHs were adsorbed to polyurethane foam (PUF) plugs.
Spatial coverage includes the Great Lakes, Northern Europe, and
two Arctic sites. Site locations, concentrations and references are
summarized in Supporting Information Table S4, and are the
same sites used for model-measurement comparison by
Friedman and Selin.12

For site-by-site comparison to simulated concentrations, we
calculate observational errors following Chen and Prinn.41 The
observational error for comparison to a model grid box accounts
for statistical representativeness (accounting for some stations’
noncontinuous sampling), analytical method precision error, site

intercalibration error, and spatial mismatch error (i.e., a single
point’s representativeness of the whole grid-box). These errors
(see Supporting Information Table S4) represent the variability
in observed values that is impossible to capture with any model,
and are thus separate frommodel uncertainty. These errors range
from ±25% to a factor of 3, depending on the measurement site
and the PAH in question.

Constraint of Physicochemical Parameters by Obser-
vations. Using the annual average measurements outlined
above, and PC-estimated concentrations based on annual
average model output, we constrain the physicochemical
parameter uncertainty distributions by Bayesian inference,
combining information from observations and a priori parameter
uncertainties. We compare (1) the PC polynomial-estimated
concentration in the model grid box encompassing a measure-
ment location for a given set of physicochemical and emissions
parameter values to 2) the observed concentration at the same
location. By mapping the predicted concentrations as a function
of the uncertain parameters using the PC estimator, we define a
weighted least-squares cost function of the form:

∑ξ
η ξ
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where summation is over the N measurement locations, Yi is the
observed value at a particular site, ηi(ξ) is the polynomial
estimate at parameter values ξ, and σi is the total “observation
errors” from above at measurement site i.
With the least-squares comparison above, the likelihood

function P(Y/ξ) is related to the cost function via

ξ| ∝ ξ−P Y( ) e K( )2

(6)

This makes use of the PC estimators and the site measurements
and their errors to estimate the likelihood of observing the
concentrations Y as a function of the parameter values ξ.
To update the a priori uncertainty distributions, we use Bayes’

rule for the a posteriori distribution P(ξ | Y):

ξ ξ ξ| ∝ |P Y P P Y( ) ( ) ( ) (7)

where P(ξ) is the prior uncertainty distribution. This results in a
description of the relative probabilities of each physicochemical
parameter value, given the available constraining measurements.

■ RESULTS
We calculate polynomial estimators as described above, and
evaluate their predicted log-concentrations against independent
full GEOS-Chem model runs. Over the parameter space covered
by the physicochemical property uncertainty distributions, the
polynomial estimator matches the validation data set with r2

greater than 0.99 (see Supporting Information Figure S4) for all
three PAHs. We use the polynomial estimators to calculate
model uncertainty distributions for NH and Arctic (above 66°N)
surface concentration geometric averages for annual and
Northern Hemisphere winter (DJF) and summer (JJA) periods
for all three PAHs, attribute fractions of this uncertainty to
individual model parameters, and constrain parameter un-
certainty distributions using observation site data.

Comparison to Measurements. Figure 1 shows a
comparison of monthly average concentrations simulated using
the PC-based estimator and associated parametric uncertainties
to measured average concentrations and measurement un-
certainties for nonurban sites for each PAH. The simulations
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capture the measurements within the ±2σ parametric
uncertainty interval for all three PAHs, with PYR and BaP
capturing the measurement means within the ± σ interval.
Simulated PHE concentrations show agreement with

measurements during the winter-spring and summer-fall
transitions, but measured means are higher than simulated
during JJA and lower during DJF.12 In the summer, the measured
mean falls within the ± σ bounds of the model, but during the
winter months (November, December, January, February), the
measured concentrations fall between the −σ and −2σ model
values. This discrepancy could be due to unresolved seasonality
of emissions, or secondary sources which are not represented in
the simulations, but have been tested and discussed previously.13

PYR simulated concentrations are lower than observed
concentrations for all except the winter months. The observed
values do, however, fall into the ± σ range of the model
uncertainty distribution for all months. BaP simulated
concentrations have the highest parametric uncertainty, and
the observed concentrations fall into the ± σ range of the model
for all months of the year, with the simulated seasonal cycle
following the observed cycle closely.
Northern Hemisphere and Arctic Model Uncertainty in

Concentration. Supporting Information Figure S5 shows
model parametric uncertainty distributions for BaP, PYR and
PHE, for both NH and Arctic average concentrations, and for
annual, winter, and summer temporal averages. Across all three
PAHs, JJA average simulated concentrations are lower with
higher uncertainty than DJF averages. PHE concentrations have
the least parametric uncertainty, with a range (95% confidence
interval) spanning approximately 1 order of magnitude for
annual, summer, and winter averages. PYR and BaP parametric
uncertainty ranges during the summer span more than 2 orders
of magnitude, and close to an order of magnitude during the
winter.

In the Arctic, parametric uncertainty is at its lowest for all three
PAHs during the winter, when there is little to no sunlight to
drive photochemical oxidation. Average concentrations of PAHs
are highest during the winter, and lowest during the summer in
the Arctic because of the presence of OH for oxidation, and this
relative abundance of OH also drives the sensitivity of the PAH
concentrations to oxidation rate constant uncertainty. The
seasonal difference in the Arctic average PAH concentration is
more pronounced than the NH average, with summer-winter
differences for all three PAHs of more than 3 orders of
magnitude.

Contributors to Model Parametric Uncertainty. The
important sources of model parametric uncertainty are
substantially different between NH and Arctic average
concentrations, and across the three PAHs. Supporting
Information Table S5 shows the fractional contribution of
leading parameters to the total resulting model parametric
concentration uncertainty for PHE, PYR, and BaP. Supporting
Information Figures S10−S20 show the spatial distributions of
these contributions across the globe.
At the hemispheric scale, PHE concentration parametric

uncertainty is driven year-round by uncertainty in the oxidation
rate constant. Since PHE is mostly in the gas phase (90%−
100%12), uncertainty in its gas-phase lifetime is the most
important contributor to parametric uncertainty in the NH
average simulated concentrations. In the Arctic average, however,
uncertainty in European emissions gains importance, contribu-
ting close to a third of the parametric uncertainty annually and
64% in the winter. The relative importance of emissions and
reduced importance of oxidation rate constant uncertainty
during Arctic winter is due to the lack of atmospheric OH
radicals. During the summer, European emissions uncertainty
remains a significant secondary contributor, but kOH uncertainty
makes up the largest fraction of the total for the model.
The contributors of PYR parametric concentration uncer-

tainty follow a similar pattern to those of PHE. Because of the
large uncertainty in the oxidation rate constant for PYR (see
Table 1) and the fact that >50% of atmospheric PYR is in the gas
phase,12 the parametric concentration uncertainty in the NH
annual average is dominated by uncertainty in kOH. Like for PHE,
the second-most important contributor to parametric uncer-
tainty is European emissions.
BaP has the most varied contributions of the three PAHs

studied. For the NH annual average, uncertainty in KBC‑Water
contributes 63% of the total uncertainty, with kOH uncertainty
contributing 30%, and the uncertainty in ΔHvap, European, and
North American emissions making up the other 7%. This
behavior changes little between the winter and summer season.
In the Arctic, KBC‑water is the leading source of parametric

uncertainty for BaP. It contributes 55% annually, whereas kOH
contributes 35% and 6% is due to ΔHvap. During the relatively
photochemistry-free winter months, the contribution from kOH
drops to 3%, and the difference is made up by increases in the
contributions of ΔHvap (to 11%), and European emissions (to
29%). In the summer, the opposite occurs and kOH uncertainty
contributes 52% of the total.
Across all three PAHs, the contribution of physicochemical

parameter uncertainty makes up more than 94% of the NH
average parametric uncertainty. This is because a large fraction of
the globe is far from emission sources, so wide spatial average
concentrations are more sensitive to the uncertainty in the
atmospheric lifetime than they are to emissions magnitude. In the
case of PYR, parametric uncertainty in the atmospheric lifetime is

Figure 1. Measured and simulated total (gas and particulate)
concentrations at nonurban sites for PHE (top), PYR (middle), and
BaP (bottom). The black lines are means across the measurements at all
nonurban sites, and their error bars show the standard deviation of the
mean for each month. The blue lines are the simulated means across the
same sites, with the shaded regions marking the σ and 2σ intervals of the
parametric uncertainty distributions for each month.
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almost entirely due to uncertainty in the oxidation rate because of
the extremely high uncertainty in oxidation rate constant. For
PHE, kOH also contributes most to uncertainty because PHE is
mostly found in the gas phase. In the case of BaP, the uncertainty
in the atmospheric lifetime is due to both the highly uncertain gas
phase oxidation rate, but also the amount of BaP found in the
particulate phase, which is primarily controlled by BC
partitioning. Because of its nature as a mostly particulate
matter-bound PAH, BaP uncertainty has a larger contribution
from the uncertainty in KBC‑Water and ΔHvap, which together
control partitioning to BC.
Closest to each emissions source region, uncertainty in that

region’s emissions becomes most import, as removal during
transport has not had time to take effect. Europe is the region
with sources closest to the Arctic, and therefore European
emissions uncertainty contributes more to simulated Arctic
concentration uncertainty than other regional emissions. The
emissions uncertainty contribution reaches a maximum during
the winter, when concentrations of all three PAHs are highest
due to lower loss rates, making it an important factor in the
quantification of PAH transport to the Arctic.
Observation-Constrained Parameter Distributions.We

constrain the probability distributions of parameter values using
the spatially distributed modeled and observed concentrations as
described in the Materials and Methods section. Figure 2 shows
the observation-derived likelihood distributions, and prior and
posterior probability distributions of the two most important
parameters for model uncertainty at the measurement sites.
PHE’s and PYR’s leading parameters are constrained by the
analysis, while BaP’s are effectively unconstrained.
As shown in Figure 2(a), for PHE, the highest observation-

constrained likelihood comes when kOH is highest and the
European regional emission rate is low. The result is that the
posterior distributions for kOH and EEurope have maximums at
higher and lower values, respectively. Figure 2(b) shows a similar
constraining effect of the observations for PYR’s kOH, which is
shifted higher, whereas the EEurope posterior distribution is
narrowed around the same value as the prior distribution. Figure
2(c) shows that the measurement comparison added no
constraints to the prior parameter distributions for BaP (neither
confirming nor denying the assumed prior), due to the larger
uncertainties in both its simulated and observed concentrations.
After constraint by the measurement data, we estimate new

most likely values for PYR’s and PHE’s kOH and rate of emission
in Europe. The a priori best estimate of kOH for PYR was 7 ×
10−11 cm−3s−1, whereas the updated best estimate is 1 × 10−10

cm−3s−1. The prior estimate of kOH for PHE of 1.9 × 10−11

cm−3s−1 is updated to 2.3 × 10−11 cm−3s−1. We lower our best
estimates of European emissions for PHE from 5.8 kt/yr to 4.1
kt/yr.

■ DISCUSSION
Through the uncertainty attribution described above, we identify
the key parameters for which reducing uncertainty would
improve our ability to model long-range transport of PAHs.
For PHE and PYR, kOH uncertainty has the largest impact on
model results, whereas for BaP kOH, KBC‑Water, and ΔHvap all
contribute to uncertainty in simulated concentrations. These
results are similar to findings for multimedia models of other
environmental toxics, which indicate that degradation rates and
partition coefficients are the largest contributors to parametric
uncertainty.19,21 Across all three PAHs, more precise exper-
imental quantification of kOH could greatly reduce parametric

model uncertainty. In particular for PYR and BaP, the lack of
experimental values of kOH leads to an additional step in the
propagation of uncertainty, as the value of kOH used in the model
is itself a parametrization. With reduced kOH uncertainty, we

Figure 2. Constraint of parameter uncertainty distributions by
measurement data. (a) PHE, (b) PYR, (c) BaP distributions for the
two most important parameters each. Prior distributions (dashed lines),
observation-based likelihoods (dot-dashed lines), and posterior
distributions (solid lines) shown.
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would be better able to constrain PAH emissions using
observations of concentrations, and we would improve our
ability to use modeling to inform policy.42

We are able to quantitatively attribute simulated concentration
uncertainty to individual model parameters while accounting for
nonlinear model responses in a computationally efficient
manner. Because of the method’s relatively low number of
required model runs, it could be applied to other spatially
resolved environmental models for low-cost but detailed
identification of leading contributors to parametric uncertainty.
The detailed parametric uncertainty analysis that this method
provides is an important aspect of environmental transport
model simulations that is commonly unreported in the literature.
This type of analysis should be carried out for other substances
and models, as the conclusions from our simulations of PAHs
specifically may not apply to other substances or models. This is
evident in comparison to the first-order uncertainty analysis for
BETR Research PCB153 simulations,24 which suggests that
emissions uncertainties account for more than 90% of the
simulated atmospheric concentration parametric uncertainty
under current climate and emissions.
We constrain physicochemical and emissions parameters using

measurements, with updated uncertainty distributions for kOH
and EEurope for PHE and PYR. While this method represents a
quantitative improvement over traditional model sensitivity tests,
in which parameters are altered based on forward matches to
observations, our approach also has important limitations. The
constraint relies on the comparison of concentrations measured
at a point to the average concentration within a GEOS-Chem
grid-box. While we account for this through an estimate of
representativeness error, spatial heterogeneities within the grid-
box are not represented and could introduce an unquantified bias
in the comparisons due to this mismatch of spatial resolutions.
We do not optimize for the spatial distribution of emissions in
this study, which precludes the ability to account for a local
emission source that could be driving observed concentrations at
a site. Our analysis also relies on the quantification of the
emissions parameters and their uncertainty at the inventory’s
national level, and any potential biases in these estimates would
propagate to our results. For example, an underestimation of the
uncertainty in biomass burning emissions factors in the inventory
would propagate through themodel to result in an underestimate
of concentration uncertainty.
While we quantify the impact of uncertainties in regional

emission magnitudes and physicochemical properties on
simulated concentrations in detail, there are other sources of
uncertainty in simulated concentrations. Emissions can vary
substantially temporally, and on spatial scales finer than those
considered here. These temporal and spatial resolution
mismatches between the simulations and reality will have a
more limited effect on large spatial and time averages than on
shorter-term localized concentrations. Along with direct
emissions, secondary emissions (revolatilization) from surface
media can affect atmospheric PAH concentrations, and these
secondary sources are not resolved in this work. The accuracy
and time-resolution of prescribed concentrations of particulate
matter and OH used in the model can also introduce uncertainty,
but this uncertainty is significantly smaller than that due to their
associated chemical parameters.13 There is also nonparametric
uncertainty associated with the particle partitioning scheme used,
as deviations from measurements can be large, especially for
smaller PAHs15 whose concentrations have lower sensitivity to
particle partitioning. Theoretical issues have been identified with

the parametrization of partition coefficients,43 which we have not
accounted for here. Limitations of particle partitioning schemes
for PAHs in GEOS-Chem have been investigated in detail
previously.23 Considering these uncertainties, our results suggest
that for BaP, further constraints on partitioning properties would
improve our ability to capture long-range transport.
Chemical transport modeling is susceptible to a variety of

sources of uncertainty that are not unique to the simulation of
PAHs. Advection in the atmosphere is carried out on a large scale
that is only representative of the actual advection in the
atmosphere on a coarse scale. This advection is based on
meteorological reanalysis fields that have their own uncertainty.
Prescribed precipitation also contributes to uncertainty in wet
deposition. However, many of these processes in GEOS-Chem
are evaluated and constrained using simulations of other
atmospheric constituents (e.g., carbon monoxide, ozone) for
which measurement data are less uncertain and more widely
available.44−46 The source of uncertainty most difficult to
quantify is that which is associated with PAH-specific processes
not represented by the model (e.g., on-particle oxidation
reactions other than ozonation). A process that is not described
by the model would not be represented in a parametric
uncertainty analysis, and depending on the importance of the
process could be a major source of unquantified uncertainty.
Based on model sensitivity (Supporting Information Figures

S6−S9), the most effective locations for hypothetical future
measurement sites that could be used to improve the constraint
of the most important PAH physicochemical properties are far
from sources and are generally in regions where wet deposition is
relatively less important, particularly in the Southern Hemi-
sphere. These locations, however, have very low PAH
concentrations, below common quantification limits. The
resulting measurement constraint paradox is that the locations
that would best constrain physicochemical properties have
concentrations that are the most difficult to measure. This means
that greatly reducing model parametric uncertainty by
observational constraint will require very low detection limits
at long-term remote sites. Measuring these low concentrations is
potentially achievable for the gas phase using passive air samplers,
which accumulate greater contaminant mass over longer periods
of time than traditional active samplers.42

The results we present give important insight into the
parametric uncertainty distributions of simulated PAH concen-
trations and their relationship to specific inputs. Our analysis
demonstrates that there is a need to reduce the large parametric
uncertainties stemming from physicochemical property data for
PAHs, and identifies the properties which contribute most to
model parametric uncertainty. While our analysis shows that
long-term measurement sites can be used to constrain
physicochemical property values for PHE and PYR, highlighting
the importance of such measurements of atmospheric PAHs,
better experimental quantification of PAH properties would
provide the greatest reductions in simulated concentration
uncertainty. We identify quantitatively which physicochemical
properties of PHE, PYR and BaP could be targeted
experimentally to greatly reduce simulated concentration
uncertainty.
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parametric uncertainty comparisons, and parametric uncertainty
contributions as a function of latitude and longitude. The
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Publications website at DOI: 10.1021/acs.est.5b01823.
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